Files changed (1) hide show
  1. app.py +80 -551
app.py CHANGED
@@ -1,577 +1,106 @@
1
- import subprocess
2
- import re
3
- from typing import List, Tuple, Optional
4
-
5
- # Define the command to be executed
6
- command = ["python", "setup.py", "build_ext", "--inplace"]
7
-
8
- # Execute the command
9
- result = subprocess.run(command, capture_output=True, text=True)
10
-
11
- # Print the output and error (if any)
12
- print("Output:\n", result.stdout)
13
- print("Errors:\n", result.stderr)
14
-
15
- # Check if the command was successful
16
- if result.returncode == 0:
17
- print("Command executed successfully.")
18
- else:
19
- print("Command failed with return code:", result.returncode)
20
-
21
- import gradio as gr
22
- from datetime import datetime
23
  import os
24
- os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
25
- import torch
26
  import numpy as np
 
27
  import cv2
28
- import matplotlib.pyplot as plt
29
- from PIL import Image, ImageFilter
30
- from sam2.build_sam import build_sam2_video_predictor
31
-
32
- from moviepy.editor import ImageSequenceClip
33
-
34
- def get_video_fps(video_path):
35
- # Open the video file
36
- cap = cv2.VideoCapture(video_path)
37
-
38
- if not cap.isOpened():
39
- print("Error: Could not open video.")
40
- return None
41
-
42
- # Get the FPS of the video
43
- fps = cap.get(cv2.CAP_PROP_FPS)
44
 
45
- return fps
 
46
 
47
- def clear_points(image):
48
- # we clean all
49
- return [
50
- image, # first_frame_path
51
- gr.State([]), # tracking_points
52
- gr.State([]), # trackings_input_label
53
- image, # points_map
54
- #gr.State() # stored_inference_state
55
- ]
56
 
57
- def preprocess_video_in(video_path):
58
-
59
- # Generate a unique ID based on the current date and time
60
- unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
61
-
62
- # Set directory with this ID to store video frames
63
- extracted_frames_output_dir = f'frames_{unique_id}'
64
 
65
- # Create the output directory
66
- os.makedirs(extracted_frames_output_dir, exist_ok=True)
67
-
68
- ### Process video frames ###
69
- # Open the video file
70
- cap = cv2.VideoCapture(video_path)
71
 
72
- if not cap.isOpened():
73
- print("Error: Could not open video.")
74
- return None
75
 
76
- # Get the frames per second (FPS) of the video
 
77
  fps = cap.get(cv2.CAP_PROP_FPS)
 
 
78
 
79
- # Calculate the number of frames to process (10 seconds of video)
80
- max_frames = int(fps * 10)
81
 
82
- frame_number = 0
83
- first_frame = None
84
-
85
- while True:
86
  ret, frame = cap.read()
87
- if not ret or frame_number >= max_frames:
88
  break
89
 
90
- # Format the frame filename as '00000.jpg'
91
- frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg')
92
-
93
- # Save the frame as a JPEG file
94
- cv2.imwrite(frame_filename, frame)
95
-
96
- # Store the first frame
97
- if frame_number == 0:
98
- first_frame = frame_filename
99
 
100
- frame_number += 1
 
 
101
 
102
- # Release the video capture object
103
  cap.release()
 
104
 
105
- # scan all the JPEG frame names in this directory
106
- scanned_frames = [
107
- p for p in os.listdir(extracted_frames_output_dir)
108
- if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
109
- ]
110
- scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
111
- # print(f"SCANNED_FRAMES: {scanned_frames}")
112
-
113
- return [
114
- first_frame, # first_frame_path
115
- gr.State([]), # tracking_points
116
- gr.State([]), # trackings_input_label
117
- first_frame, # input_first_frame_image
118
- first_frame, # points_map
119
- extracted_frames_output_dir, # video_frames_dir
120
- scanned_frames, # scanned_frames
121
- None, # stored_inference_state
122
- None, # stored_frame_names
123
- gr.update(open=False) # video_in_drawer
124
- ]
125
-
126
- def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData):
127
- print(f"You selected {evt.value} at {evt.index} from {evt.target}")
128
-
129
- tracking_points.value.append(evt.index)
130
- print(f"TRACKING POINT: {tracking_points.value}")
131
-
132
- if point_type == "include":
133
- trackings_input_label.value.append(1)
134
- elif point_type == "exclude":
135
- trackings_input_label.value.append(0)
136
- print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
137
-
138
- # Open the image and get its dimensions
139
- transparent_background = Image.open(input_first_frame_image).convert('RGBA')
140
- w, h = transparent_background.size
141
-
142
- # Define the circle radius as a fraction of the smaller dimension
143
- fraction = 0.02 # You can adjust this value as needed
144
- radius = int(fraction * min(w, h))
145
-
146
- # Create a transparent layer to draw on
147
- transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
148
-
149
- for index, track in enumerate(tracking_points.value):
150
- if trackings_input_label.value[index] == 1:
151
- cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
152
- else:
153
- cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
154
-
155
- # Convert the transparent layer back to an image
156
- transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
157
- selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
158
-
159
- return tracking_points, trackings_input_label, selected_point_map
160
-
161
- # use bfloat16 for the entire notebook
162
- torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
163
-
164
- if torch.cuda.get_device_properties(0).major >= 8:
165
- # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
166
- torch.backends.cuda.matmul.allow_tf32 = True
167
- torch.backends.cudnn.allow_tf32 = True
168
-
169
- def show_mask(mask, ax, obj_id=None, random_color=False):
170
- if random_color:
171
- color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
172
- else:
173
- cmap = plt.get_cmap("tab10")
174
- cmap_idx = 0 if obj_id is None else obj_id
175
- color = np.array([*cmap(cmap_idx)[:3], 0.6])
176
- h, w = mask.shape[-2:]
177
- mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
178
- ax.imshow(mask_image)
179
-
180
-
181
- def show_points(coords, labels, ax, marker_size=200):
182
- pos_points = coords[labels==1]
183
- neg_points = coords[labels==0]
184
- ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
185
- ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
186
-
187
- def show_box(box, ax):
188
- x0, y0 = box[0], box[1]
189
- w, h = box[2] - box[0], box[3] - box[1]
190
- ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
191
-
192
 
193
- def load_model(checkpoint):
194
- # Load model accordingly to user's choice
195
- if checkpoint == "tiny":
196
- sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
197
- model_cfg = "sam2_hiera_t.yaml"
198
- return [sam2_checkpoint, model_cfg]
199
- elif checkpoint == "samll":
200
- sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt"
201
- model_cfg = "sam2_hiera_s.yaml"
202
- return [sam2_checkpoint, model_cfg]
203
- elif checkpoint == "base-plus":
204
- sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt"
205
- model_cfg = "sam2_hiera_b+.yaml"
206
- return [sam2_checkpoint, model_cfg]
207
- elif checkpoint == "large":
208
- sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
209
- model_cfg = "sam2_hiera_l.yaml"
210
- return [sam2_checkpoint, model_cfg]
211
-
212
-
213
-
214
- def get_mask_sam_process(
215
- stored_inference_state,
216
- input_first_frame_image,
217
- checkpoint,
218
- tracking_points,
219
- trackings_input_label,
220
- video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
221
- scanned_frames,
222
- working_frame: str = None, # current frame being added points
223
- available_frames_to_check: List[str] = [],
224
- # progress=gr.Progress(track_tqdm=True)
225
- ):
226
-
227
- # get model and model config paths
228
- print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
229
- sam2_checkpoint, model_cfg = load_model(checkpoint)
230
- print("MODEL LOADED")
231
-
232
- # set predictor
233
- predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
234
- print("PREDICTOR READY")
235
-
236
- # `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
237
- # print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
238
- video_dir = video_frames_dir
239
-
240
- # scan all the JPEG frame names in this directory
241
- frame_names = scanned_frames
242
-
243
- # print(f"STORED INFERENCE STEP: {stored_inference_state}")
244
- if stored_inference_state is None:
245
- # Init SAM2 inference_state
246
- inference_state = predictor.init_state(video_path=video_dir)
247
- print("NEW INFERENCE_STATE INITIATED")
248
- else:
249
- inference_state = stored_inference_state
250
-
251
- # segment and track one object
252
- # predictor.reset_state(inference_state) # if any previous tracking, reset
253
-
254
- ### HANDLING WORKING FRAME
255
- # new_working_frame = None
256
- # Add new point
257
- if working_frame is None:
258
- ann_frame_idx = 0 # the frame index we interact with, 0 if it is the first frame
259
- working_frame = "frame_0.jpg"
260
- else:
261
- # Use a regular expression to find the integer
262
- match = re.search(r'frame_(\d+)', working_frame)
263
- if match:
264
- # Extract the integer from the match
265
- frame_number = int(match.group(1))
266
- ann_frame_idx = frame_number
267
-
268
- print(f"NEW_WORKING_FRAME PATH: {working_frame}")
269
-
270
- ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
271
-
272
- # Let's add a positive click at (x, y) = (210, 350) to get started
273
- points = np.array(tracking_points.value, dtype=np.float32)
274
- # for labels, `1` means positive click and `0` means negative click
275
- labels = np.array(trackings_input_label.value, np.int32)
276
- _, out_obj_ids, out_mask_logits = predictor.add_new_points(
277
- inference_state=inference_state,
278
- frame_idx=ann_frame_idx,
279
- obj_id=ann_obj_id,
280
- points=points,
281
- labels=labels,
282
- )
283
-
284
- # Create the plot
285
- plt.figure(figsize=(12, 8))
286
- plt.title(f"frame {ann_frame_idx}")
287
- plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
288
- show_points(points, labels, plt.gca())
289
- show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
290
-
291
- # Save the plot as a JPG file
292
- first_frame_output_filename = "output_first_frame.jpg"
293
- plt.savefig(first_frame_output_filename, format='jpg')
294
- plt.close()
295
- torch.cuda.empty_cache()
296
-
297
- # Assuming available_frames_to_check.value is a list
298
- if working_frame not in available_frames_to_check:
299
- available_frames_to_check.append(working_frame)
300
- print(available_frames_to_check)
301
-
302
- return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)
303
-
304
- def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame, progress=gr.Progress(track_tqdm=True)):
305
- #### PROPAGATION ####
306
- sam2_checkpoint, model_cfg = load_model(checkpoint)
307
- predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
308
-
309
- inference_state = stored_inference_state
310
- frame_names = stored_frame_names
311
- video_dir = video_frames_dir
312
-
313
- # Define a directory to save the JPEG images
314
- frames_output_dir = "frames_output_images"
315
- os.makedirs(frames_output_dir, exist_ok=True)
316
-
317
- # Initialize a list to store file paths of saved images
318
- jpeg_images = []
319
-
320
- # run propagation throughout the video and collect the results in a dict
321
- video_segments = {} # video_segments contains the per-frame segmentation results
322
- for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
323
- video_segments[out_frame_idx] = {
324
- out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
325
- for i, out_obj_id in enumerate(out_obj_ids)
326
- }
327
-
328
- # render the segmentation results every few frames
329
- if vis_frame_type == "check":
330
- vis_frame_stride = 15
331
- elif vis_frame_type == "render":
332
- vis_frame_stride = 1
333
-
334
- plt.close("all")
335
- for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
336
- plt.figure(figsize=(6, 4))
337
- plt.title(f"frame {out_frame_idx}")
338
- plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
339
- for out_obj_id, out_mask in video_segments[out_frame_idx].items():
340
- show_mask(out_mask, plt.gca(), obj_id=out_obj_id)
341
-
342
- # Define the output filename and save the figure as a JPEG file
343
- output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
344
- plt.savefig(output_filename, format='jpg')
345
-
346
- # Close the plot
347
- plt.close()
348
-
349
- # Append the file path to the list
350
- jpeg_images.append(output_filename)
351
-
352
- if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
353
- available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")
354
-
355
- torch.cuda.empty_cache()
356
- print(f"JPEG_IMAGES: {jpeg_images}")
357
-
358
- if vis_frame_type == "check":
359
- return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True)
360
- elif vis_frame_type == "render":
361
- # Create a video clip from the image sequence
362
- original_fps = get_video_fps(video_in)
363
- fps = original_fps # Frames per second
364
- total_frames = len(jpeg_images)
365
- clip = ImageSequenceClip(jpeg_images, fps=fps)
366
- # Write the result to a file
367
- final_vid_output_path = "output_video.mp4"
368
-
369
- # Write the result to a file
370
- clip.write_videofile(
371
- final_vid_output_path,
372
- codec='libx264'
373
- )
374
-
375
- return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True)
376
-
377
- def update_ui(vis_frame_type):
378
- if vis_frame_type == "check":
379
- return gr.update(visible=True), gr.update(visible=False)
380
- elif vis_frame_type == "render":
381
- return gr.update(visible=False), gr.update(visible=True)
382
-
383
- def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
384
- new_working_frame = None
385
- if working_frame == None:
386
- new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
387
-
388
- else:
389
- # Use a regular expression to find the integer
390
- match = re.search(r'frame_(\d+)', working_frame)
391
- if match:
392
- # Extract the integer from the match
393
- frame_number = int(match.group(1))
394
- ann_frame_idx = frame_number
395
- new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx])
396
- return gr.State([]), gr.State([]), new_working_frame, new_working_frame
397
-
398
- def reset_propagation(first_frame_path, predictor, stored_inference_state):
399
-
400
- predictor.reset_state(stored_inference_state)
401
- # print(f"RESET State: {stored_inference_state} ")
402
- return first_frame_path, gr.State([]), gr.State([]), gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False)
403
-
404
  with gr.Blocks() as demo:
405
- first_frame_path = gr.State()
406
- tracking_points = gr.State([])
407
- trackings_input_label = gr.State([])
408
- video_frames_dir = gr.State()
409
- scanned_frames = gr.State()
410
- loaded_predictor = gr.State()
411
- stored_inference_state = gr.State()
412
- stored_frame_names = gr.State()
413
- available_frames_to_check = gr.State([])
414
- with gr.Column():
415
- gr.Markdown("# SAM2 Video Predictor")
416
- gr.Markdown("This is a simple demo for video segmentation with SAM2.")
417
- gr.Markdown("""Instructions: (read the instructions)
 
 
 
 
 
 
 
418
 
419
- 1. Upload your video [MP4-24fps]
420
- 2. With 'include' point type selected, Click on the object to mask on first frame
421
- 3. Switch to 'exclude' point type if you want to specify an area to avoid
422
- 4. Get Mask !
423
- 5. Check Propagation every 15 frames
424
- 6. Add point on corresponding frame number if any mask needs to be refined
425
- 7. If propagation seems ok on every 15 frames, propagate with "render" to render final masked video !
426
- 8. Hit Reset button if you want to refresh and start again.
427
- * Input video will be processed over 10 seconds only for demo purpose :)
428
- """)
429
- with gr.Row():
430
-
431
- with gr.Column():
432
-
433
-
434
- with gr.Row():
435
- point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
436
- clear_points_btn = gr.Button("Clear Points", scale=1)
437
-
438
- input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
439
-
440
- points_map = gr.Image(
441
- label="Point n Click map",
442
- type="filepath",
443
- interactive=False
444
- )
445
-
446
- with gr.Row():
447
- checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
448
- submit_btn = gr.Button("Get Mask", size="lg")
449
-
450
- with gr.Accordion("Your video IN", open=True) as video_in_drawer:
451
- video_in = gr.Video(label="Video IN", format="mp4")
452
-
453
- gr.HTML("""
454
-
455
- <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
456
- <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
457
- </a> to skip queue and avoid OOM errors from heavy public load
458
- """)
459
-
460
- with gr.Column():
461
- with gr.Row():
462
- working_frame = gr.Dropdown(label="working frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True)
463
- change_current = gr.Button("change current", visible=False)
464
- output_result = gr.Image(label="current working mask ref")
465
- with gr.Row():
466
- vis_frame_type = gr.Radio(label="Propagation level", choices=["check", "render"], value="check", scale=2)
467
- propagate_btn = gr.Button("Propagate", scale=1)
468
- reset_prpgt_brn = gr.Button("Reset", visible=False)
469
- output_propagated = gr.Gallery(label="Propagated Mask samples gallery", columns=4, visible=False)
470
- output_video = gr.Video(visible=False)
471
- # output_result_mask = gr.Image()
472
-
473
-
474
-
475
- # When new video is uploaded
476
- video_in.upload(
477
- fn = preprocess_video_in,
478
- inputs = [video_in],
479
- outputs = [
480
- first_frame_path,
481
- tracking_points, # update Tracking Points in the gr.State([]) object
482
- trackings_input_label, # update Tracking Labels in the gr.State([]) object
483
- input_first_frame_image, # hidden component used as ref when clearing points
484
- points_map, # Image component where we add new tracking points
485
- video_frames_dir, # Array where frames from video_in are deep stored
486
- scanned_frames, # Scanned frames by SAM2
487
- stored_inference_state, # Sam2 inference state
488
- stored_frame_names, #
489
- video_in_drawer, # Accordion to hide uploaded video player
490
- ],
491
- queue = False
492
- )
493
-
494
-
495
- # triggered when we click on image to add new points
496
- points_map.select(
497
- fn = get_point,
498
- inputs = [
499
- point_type, # "include" or "exclude"
500
- tracking_points, # get tracking_points values
501
- trackings_input_label, # get tracking label values
502
- input_first_frame_image, # gr.State() first frame path
503
- ],
504
- outputs = [
505
- tracking_points, # updated with new points
506
- trackings_input_label, # updated with corresponding labels
507
- points_map, # updated image with points
508
- ],
509
- queue = False
510
- )
511
-
512
- # Clear every points clicked and added to the map
513
- clear_points_btn.click(
514
- fn = clear_points,
515
- inputs = input_first_frame_image, # we get the untouched hidden image
516
- outputs = [
517
- first_frame_path,
518
- tracking_points,
519
- trackings_input_label,
520
- points_map,
521
- #stored_inference_state,
522
- ],
523
- queue=False
524
- )
525
-
526
-
527
- change_current.click(
528
- fn = switch_working_frame,
529
- inputs = [working_frame, scanned_frames, video_frames_dir],
530
- outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map],
531
- queue=False
532
- )
533
-
534
-
535
- submit_btn.click(
536
- fn = get_mask_sam_process,
537
- inputs = [
538
- stored_inference_state,
539
- input_first_frame_image,
540
- checkpoint,
541
- tracking_points,
542
- trackings_input_label,
543
- video_frames_dir,
544
- scanned_frames,
545
- working_frame,
546
- available_frames_to_check,
547
- ],
548
- outputs = [
549
- change_current,
550
- output_result,
551
- stored_frame_names,
552
- loaded_predictor,
553
- stored_inference_state,
554
- working_frame,
555
- ],
556
- queue=False
557
- )
558
-
559
- reset_prpgt_brn.click(
560
- fn = reset_propagation,
561
- inputs = [first_frame_path, loaded_predictor, stored_inference_state],
562
- outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn],
563
- queue=False
564
  )
565
 
566
- propagate_btn.click(
567
- fn = update_ui,
568
- inputs = [vis_frame_type],
569
- outputs = [output_propagated, output_video],
570
- queue=False
571
- ).then(
572
- fn = propagate_to_all,
573
- inputs = [video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame],
574
- outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn]
575
  )
576
 
577
- demo.launch(show_api=False, show_error=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import gradio as gr
 
3
  import numpy as np
4
+ from PIL import Image
5
  import cv2
6
+ import spaces
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ from inference.seg import process_image_or_video
9
+ from config import SAPIENS_LITE_MODELS_PATH
10
 
11
+ def update_model_choices(task):
12
+ model_choices = list(SAPIENS_LITE_MODELS_PATH[task.lower()].keys())
13
+ return gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None)
 
 
 
 
 
 
14
 
15
+ @spaces.GPU(duration=120)
16
+ def process_image(input_image, task, version):
17
+ if isinstance(input_image, np.ndarray):
18
+ input_image = Image.fromarray(input_image)
 
 
 
19
 
20
+ result = process_image_or_video(input_image, task=task.lower(), version=version)
 
 
 
 
 
21
 
22
+ return result
 
 
23
 
24
+ def process_video(input_video, task, version):
25
+ cap = cv2.VideoCapture(input_video)
26
  fps = cap.get(cv2.CAP_PROP_FPS)
27
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
28
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
29
 
30
+ output_video = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
 
31
 
32
+ while cap.isOpened():
 
 
 
33
  ret, frame = cap.read()
34
+ if not ret:
35
  break
36
 
37
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
38
+ processed_frame = process_image_or_video(frame_rgb, task=task.lower(), version=version)
 
 
 
 
 
 
 
39
 
40
+ if processed_frame is not None:
41
+ processed_frame_bgr = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
42
+ output_video.write(processed_frame_bgr)
43
 
 
44
  cap.release()
45
+ output_video.release()
46
 
47
+ return 'output_video.mp4'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  with gr.Blocks() as demo:
50
+ gr.Markdown("# Sapiens Arena 🤸🏽‍♂️ - WIP devmode")
51
+ with gr.Tabs():
52
+ with gr.TabItem('Image'):
53
+ with gr.Row():
54
+ with gr.Column():
55
+ input_image = gr.Image(label="Input Image", type="pil")
56
+ select_task_image = gr.Radio(
57
+ ["seg", "pose", "depth", "normal"],
58
+ label="Task",
59
+ info="Choose the task to perform",
60
+ value="seg"
61
+ )
62
+ model_name_image = gr.Dropdown(
63
+ label="Model Version",
64
+ choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()),
65
+ value="sapiens_0.3b",
66
+ )
67
+ with gr.Column():
68
+ result_image = gr.Image(label="Result")
69
+ run_button_image = gr.Button("Run")
70
 
71
+ with gr.TabItem('Video'):
72
+ with gr.Row():
73
+ with gr.Column():
74
+ input_video = gr.Video(label="Input Video")
75
+ select_task_video = gr.Radio(
76
+ ["seg", "pose", "depth", "normal"],
77
+ label="Task",
78
+ info="Choose the task to perform",
79
+ value="seg"
80
+ )
81
+ model_name_video = gr.Dropdown(
82
+ label="Model Version",
83
+ choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()),
84
+ value="sapiens_0.3b",
85
+ )
86
+ with gr.Column():
87
+ result_video = gr.Video(label="Result")
88
+ run_button_video = gr.Button("Run")
89
+
90
+ select_task_image.change(fn=update_model_choices, inputs=select_task_image, outputs=model_name_image)
91
+ select_task_video.change(fn=update_model_choices, inputs=select_task_video, outputs=model_name_video)
92
+
93
+ run_button_image.click(
94
+ fn=process_image,
95
+ inputs=[input_image, select_task_image, model_name_image],
96
+ outputs=[result_image],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  )
98
 
99
+ run_button_video.click(
100
+ fn=process_video,
101
+ inputs=[input_video, select_task_video, model_name_video],
102
+ outputs=[result_video],
 
 
 
 
 
103
  )
104
 
105
+ if __name__ == "__main__":
106
+ demo.launch(share=True)