Spaces:
Sleeping
Sleeping
Update app.py
#2
by
joselobenitezg
- opened
app.py
CHANGED
@@ -1,577 +1,106 @@
|
|
1 |
-
import subprocess
|
2 |
-
import re
|
3 |
-
from typing import List, Tuple, Optional
|
4 |
-
|
5 |
-
# Define the command to be executed
|
6 |
-
command = ["python", "setup.py", "build_ext", "--inplace"]
|
7 |
-
|
8 |
-
# Execute the command
|
9 |
-
result = subprocess.run(command, capture_output=True, text=True)
|
10 |
-
|
11 |
-
# Print the output and error (if any)
|
12 |
-
print("Output:\n", result.stdout)
|
13 |
-
print("Errors:\n", result.stderr)
|
14 |
-
|
15 |
-
# Check if the command was successful
|
16 |
-
if result.returncode == 0:
|
17 |
-
print("Command executed successfully.")
|
18 |
-
else:
|
19 |
-
print("Command failed with return code:", result.returncode)
|
20 |
-
|
21 |
-
import gradio as gr
|
22 |
-
from datetime import datetime
|
23 |
import os
|
24 |
-
|
25 |
-
import torch
|
26 |
import numpy as np
|
|
|
27 |
import cv2
|
28 |
-
import
|
29 |
-
from PIL import Image, ImageFilter
|
30 |
-
from sam2.build_sam import build_sam2_video_predictor
|
31 |
-
|
32 |
-
from moviepy.editor import ImageSequenceClip
|
33 |
-
|
34 |
-
def get_video_fps(video_path):
|
35 |
-
# Open the video file
|
36 |
-
cap = cv2.VideoCapture(video_path)
|
37 |
-
|
38 |
-
if not cap.isOpened():
|
39 |
-
print("Error: Could not open video.")
|
40 |
-
return None
|
41 |
-
|
42 |
-
# Get the FPS of the video
|
43 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
44 |
|
45 |
-
|
|
|
46 |
|
47 |
-
def
|
48 |
-
|
49 |
-
return [
|
50 |
-
image, # first_frame_path
|
51 |
-
gr.State([]), # tracking_points
|
52 |
-
gr.State([]), # trackings_input_label
|
53 |
-
image, # points_map
|
54 |
-
#gr.State() # stored_inference_state
|
55 |
-
]
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
# Set directory with this ID to store video frames
|
63 |
-
extracted_frames_output_dir = f'frames_{unique_id}'
|
64 |
|
65 |
-
|
66 |
-
os.makedirs(extracted_frames_output_dir, exist_ok=True)
|
67 |
-
|
68 |
-
### Process video frames ###
|
69 |
-
# Open the video file
|
70 |
-
cap = cv2.VideoCapture(video_path)
|
71 |
|
72 |
-
|
73 |
-
print("Error: Could not open video.")
|
74 |
-
return None
|
75 |
|
76 |
-
|
|
|
77 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
max_frames = int(fps * 10)
|
81 |
|
82 |
-
|
83 |
-
first_frame = None
|
84 |
-
|
85 |
-
while True:
|
86 |
ret, frame = cap.read()
|
87 |
-
if not ret
|
88 |
break
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
# Save the frame as a JPEG file
|
94 |
-
cv2.imwrite(frame_filename, frame)
|
95 |
-
|
96 |
-
# Store the first frame
|
97 |
-
if frame_number == 0:
|
98 |
-
first_frame = frame_filename
|
99 |
|
100 |
-
|
|
|
|
|
101 |
|
102 |
-
# Release the video capture object
|
103 |
cap.release()
|
|
|
104 |
|
105 |
-
|
106 |
-
scanned_frames = [
|
107 |
-
p for p in os.listdir(extracted_frames_output_dir)
|
108 |
-
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
109 |
-
]
|
110 |
-
scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
111 |
-
# print(f"SCANNED_FRAMES: {scanned_frames}")
|
112 |
-
|
113 |
-
return [
|
114 |
-
first_frame, # first_frame_path
|
115 |
-
gr.State([]), # tracking_points
|
116 |
-
gr.State([]), # trackings_input_label
|
117 |
-
first_frame, # input_first_frame_image
|
118 |
-
first_frame, # points_map
|
119 |
-
extracted_frames_output_dir, # video_frames_dir
|
120 |
-
scanned_frames, # scanned_frames
|
121 |
-
None, # stored_inference_state
|
122 |
-
None, # stored_frame_names
|
123 |
-
gr.update(open=False) # video_in_drawer
|
124 |
-
]
|
125 |
-
|
126 |
-
def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData):
|
127 |
-
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
128 |
-
|
129 |
-
tracking_points.value.append(evt.index)
|
130 |
-
print(f"TRACKING POINT: {tracking_points.value}")
|
131 |
-
|
132 |
-
if point_type == "include":
|
133 |
-
trackings_input_label.value.append(1)
|
134 |
-
elif point_type == "exclude":
|
135 |
-
trackings_input_label.value.append(0)
|
136 |
-
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
|
137 |
-
|
138 |
-
# Open the image and get its dimensions
|
139 |
-
transparent_background = Image.open(input_first_frame_image).convert('RGBA')
|
140 |
-
w, h = transparent_background.size
|
141 |
-
|
142 |
-
# Define the circle radius as a fraction of the smaller dimension
|
143 |
-
fraction = 0.02 # You can adjust this value as needed
|
144 |
-
radius = int(fraction * min(w, h))
|
145 |
-
|
146 |
-
# Create a transparent layer to draw on
|
147 |
-
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
148 |
-
|
149 |
-
for index, track in enumerate(tracking_points.value):
|
150 |
-
if trackings_input_label.value[index] == 1:
|
151 |
-
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
152 |
-
else:
|
153 |
-
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
154 |
-
|
155 |
-
# Convert the transparent layer back to an image
|
156 |
-
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
|
157 |
-
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
|
158 |
-
|
159 |
-
return tracking_points, trackings_input_label, selected_point_map
|
160 |
-
|
161 |
-
# use bfloat16 for the entire notebook
|
162 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
163 |
-
|
164 |
-
if torch.cuda.get_device_properties(0).major >= 8:
|
165 |
-
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
166 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
167 |
-
torch.backends.cudnn.allow_tf32 = True
|
168 |
-
|
169 |
-
def show_mask(mask, ax, obj_id=None, random_color=False):
|
170 |
-
if random_color:
|
171 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
172 |
-
else:
|
173 |
-
cmap = plt.get_cmap("tab10")
|
174 |
-
cmap_idx = 0 if obj_id is None else obj_id
|
175 |
-
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
176 |
-
h, w = mask.shape[-2:]
|
177 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
178 |
-
ax.imshow(mask_image)
|
179 |
-
|
180 |
-
|
181 |
-
def show_points(coords, labels, ax, marker_size=200):
|
182 |
-
pos_points = coords[labels==1]
|
183 |
-
neg_points = coords[labels==0]
|
184 |
-
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
185 |
-
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
186 |
-
|
187 |
-
def show_box(box, ax):
|
188 |
-
x0, y0 = box[0], box[1]
|
189 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
190 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
|
191 |
-
|
192 |
|
193 |
-
def load_model(checkpoint):
|
194 |
-
# Load model accordingly to user's choice
|
195 |
-
if checkpoint == "tiny":
|
196 |
-
sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
|
197 |
-
model_cfg = "sam2_hiera_t.yaml"
|
198 |
-
return [sam2_checkpoint, model_cfg]
|
199 |
-
elif checkpoint == "samll":
|
200 |
-
sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt"
|
201 |
-
model_cfg = "sam2_hiera_s.yaml"
|
202 |
-
return [sam2_checkpoint, model_cfg]
|
203 |
-
elif checkpoint == "base-plus":
|
204 |
-
sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt"
|
205 |
-
model_cfg = "sam2_hiera_b+.yaml"
|
206 |
-
return [sam2_checkpoint, model_cfg]
|
207 |
-
elif checkpoint == "large":
|
208 |
-
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
|
209 |
-
model_cfg = "sam2_hiera_l.yaml"
|
210 |
-
return [sam2_checkpoint, model_cfg]
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
def get_mask_sam_process(
|
215 |
-
stored_inference_state,
|
216 |
-
input_first_frame_image,
|
217 |
-
checkpoint,
|
218 |
-
tracking_points,
|
219 |
-
trackings_input_label,
|
220 |
-
video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
|
221 |
-
scanned_frames,
|
222 |
-
working_frame: str = None, # current frame being added points
|
223 |
-
available_frames_to_check: List[str] = [],
|
224 |
-
# progress=gr.Progress(track_tqdm=True)
|
225 |
-
):
|
226 |
-
|
227 |
-
# get model and model config paths
|
228 |
-
print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
|
229 |
-
sam2_checkpoint, model_cfg = load_model(checkpoint)
|
230 |
-
print("MODEL LOADED")
|
231 |
-
|
232 |
-
# set predictor
|
233 |
-
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
234 |
-
print("PREDICTOR READY")
|
235 |
-
|
236 |
-
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
|
237 |
-
# print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
|
238 |
-
video_dir = video_frames_dir
|
239 |
-
|
240 |
-
# scan all the JPEG frame names in this directory
|
241 |
-
frame_names = scanned_frames
|
242 |
-
|
243 |
-
# print(f"STORED INFERENCE STEP: {stored_inference_state}")
|
244 |
-
if stored_inference_state is None:
|
245 |
-
# Init SAM2 inference_state
|
246 |
-
inference_state = predictor.init_state(video_path=video_dir)
|
247 |
-
print("NEW INFERENCE_STATE INITIATED")
|
248 |
-
else:
|
249 |
-
inference_state = stored_inference_state
|
250 |
-
|
251 |
-
# segment and track one object
|
252 |
-
# predictor.reset_state(inference_state) # if any previous tracking, reset
|
253 |
-
|
254 |
-
### HANDLING WORKING FRAME
|
255 |
-
# new_working_frame = None
|
256 |
-
# Add new point
|
257 |
-
if working_frame is None:
|
258 |
-
ann_frame_idx = 0 # the frame index we interact with, 0 if it is the first frame
|
259 |
-
working_frame = "frame_0.jpg"
|
260 |
-
else:
|
261 |
-
# Use a regular expression to find the integer
|
262 |
-
match = re.search(r'frame_(\d+)', working_frame)
|
263 |
-
if match:
|
264 |
-
# Extract the integer from the match
|
265 |
-
frame_number = int(match.group(1))
|
266 |
-
ann_frame_idx = frame_number
|
267 |
-
|
268 |
-
print(f"NEW_WORKING_FRAME PATH: {working_frame}")
|
269 |
-
|
270 |
-
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
|
271 |
-
|
272 |
-
# Let's add a positive click at (x, y) = (210, 350) to get started
|
273 |
-
points = np.array(tracking_points.value, dtype=np.float32)
|
274 |
-
# for labels, `1` means positive click and `0` means negative click
|
275 |
-
labels = np.array(trackings_input_label.value, np.int32)
|
276 |
-
_, out_obj_ids, out_mask_logits = predictor.add_new_points(
|
277 |
-
inference_state=inference_state,
|
278 |
-
frame_idx=ann_frame_idx,
|
279 |
-
obj_id=ann_obj_id,
|
280 |
-
points=points,
|
281 |
-
labels=labels,
|
282 |
-
)
|
283 |
-
|
284 |
-
# Create the plot
|
285 |
-
plt.figure(figsize=(12, 8))
|
286 |
-
plt.title(f"frame {ann_frame_idx}")
|
287 |
-
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
|
288 |
-
show_points(points, labels, plt.gca())
|
289 |
-
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
|
290 |
-
|
291 |
-
# Save the plot as a JPG file
|
292 |
-
first_frame_output_filename = "output_first_frame.jpg"
|
293 |
-
plt.savefig(first_frame_output_filename, format='jpg')
|
294 |
-
plt.close()
|
295 |
-
torch.cuda.empty_cache()
|
296 |
-
|
297 |
-
# Assuming available_frames_to_check.value is a list
|
298 |
-
if working_frame not in available_frames_to_check:
|
299 |
-
available_frames_to_check.append(working_frame)
|
300 |
-
print(available_frames_to_check)
|
301 |
-
|
302 |
-
return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)
|
303 |
-
|
304 |
-
def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame, progress=gr.Progress(track_tqdm=True)):
|
305 |
-
#### PROPAGATION ####
|
306 |
-
sam2_checkpoint, model_cfg = load_model(checkpoint)
|
307 |
-
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
308 |
-
|
309 |
-
inference_state = stored_inference_state
|
310 |
-
frame_names = stored_frame_names
|
311 |
-
video_dir = video_frames_dir
|
312 |
-
|
313 |
-
# Define a directory to save the JPEG images
|
314 |
-
frames_output_dir = "frames_output_images"
|
315 |
-
os.makedirs(frames_output_dir, exist_ok=True)
|
316 |
-
|
317 |
-
# Initialize a list to store file paths of saved images
|
318 |
-
jpeg_images = []
|
319 |
-
|
320 |
-
# run propagation throughout the video and collect the results in a dict
|
321 |
-
video_segments = {} # video_segments contains the per-frame segmentation results
|
322 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
|
323 |
-
video_segments[out_frame_idx] = {
|
324 |
-
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
325 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
326 |
-
}
|
327 |
-
|
328 |
-
# render the segmentation results every few frames
|
329 |
-
if vis_frame_type == "check":
|
330 |
-
vis_frame_stride = 15
|
331 |
-
elif vis_frame_type == "render":
|
332 |
-
vis_frame_stride = 1
|
333 |
-
|
334 |
-
plt.close("all")
|
335 |
-
for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
|
336 |
-
plt.figure(figsize=(6, 4))
|
337 |
-
plt.title(f"frame {out_frame_idx}")
|
338 |
-
plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
|
339 |
-
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
|
340 |
-
show_mask(out_mask, plt.gca(), obj_id=out_obj_id)
|
341 |
-
|
342 |
-
# Define the output filename and save the figure as a JPEG file
|
343 |
-
output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
|
344 |
-
plt.savefig(output_filename, format='jpg')
|
345 |
-
|
346 |
-
# Close the plot
|
347 |
-
plt.close()
|
348 |
-
|
349 |
-
# Append the file path to the list
|
350 |
-
jpeg_images.append(output_filename)
|
351 |
-
|
352 |
-
if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
|
353 |
-
available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")
|
354 |
-
|
355 |
-
torch.cuda.empty_cache()
|
356 |
-
print(f"JPEG_IMAGES: {jpeg_images}")
|
357 |
-
|
358 |
-
if vis_frame_type == "check":
|
359 |
-
return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True)
|
360 |
-
elif vis_frame_type == "render":
|
361 |
-
# Create a video clip from the image sequence
|
362 |
-
original_fps = get_video_fps(video_in)
|
363 |
-
fps = original_fps # Frames per second
|
364 |
-
total_frames = len(jpeg_images)
|
365 |
-
clip = ImageSequenceClip(jpeg_images, fps=fps)
|
366 |
-
# Write the result to a file
|
367 |
-
final_vid_output_path = "output_video.mp4"
|
368 |
-
|
369 |
-
# Write the result to a file
|
370 |
-
clip.write_videofile(
|
371 |
-
final_vid_output_path,
|
372 |
-
codec='libx264'
|
373 |
-
)
|
374 |
-
|
375 |
-
return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True)
|
376 |
-
|
377 |
-
def update_ui(vis_frame_type):
|
378 |
-
if vis_frame_type == "check":
|
379 |
-
return gr.update(visible=True), gr.update(visible=False)
|
380 |
-
elif vis_frame_type == "render":
|
381 |
-
return gr.update(visible=False), gr.update(visible=True)
|
382 |
-
|
383 |
-
def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
|
384 |
-
new_working_frame = None
|
385 |
-
if working_frame == None:
|
386 |
-
new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
|
387 |
-
|
388 |
-
else:
|
389 |
-
# Use a regular expression to find the integer
|
390 |
-
match = re.search(r'frame_(\d+)', working_frame)
|
391 |
-
if match:
|
392 |
-
# Extract the integer from the match
|
393 |
-
frame_number = int(match.group(1))
|
394 |
-
ann_frame_idx = frame_number
|
395 |
-
new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx])
|
396 |
-
return gr.State([]), gr.State([]), new_working_frame, new_working_frame
|
397 |
-
|
398 |
-
def reset_propagation(first_frame_path, predictor, stored_inference_state):
|
399 |
-
|
400 |
-
predictor.reset_state(stored_inference_state)
|
401 |
-
# print(f"RESET State: {stored_inference_state} ")
|
402 |
-
return first_frame_path, gr.State([]), gr.State([]), gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False)
|
403 |
-
|
404 |
with gr.Blocks() as demo:
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
with gr.
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
with gr.Row():
|
447 |
-
checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
|
448 |
-
submit_btn = gr.Button("Get Mask", size="lg")
|
449 |
-
|
450 |
-
with gr.Accordion("Your video IN", open=True) as video_in_drawer:
|
451 |
-
video_in = gr.Video(label="Video IN", format="mp4")
|
452 |
-
|
453 |
-
gr.HTML("""
|
454 |
-
|
455 |
-
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
|
456 |
-
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
|
457 |
-
</a> to skip queue and avoid OOM errors from heavy public load
|
458 |
-
""")
|
459 |
-
|
460 |
-
with gr.Column():
|
461 |
-
with gr.Row():
|
462 |
-
working_frame = gr.Dropdown(label="working frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True)
|
463 |
-
change_current = gr.Button("change current", visible=False)
|
464 |
-
output_result = gr.Image(label="current working mask ref")
|
465 |
-
with gr.Row():
|
466 |
-
vis_frame_type = gr.Radio(label="Propagation level", choices=["check", "render"], value="check", scale=2)
|
467 |
-
propagate_btn = gr.Button("Propagate", scale=1)
|
468 |
-
reset_prpgt_brn = gr.Button("Reset", visible=False)
|
469 |
-
output_propagated = gr.Gallery(label="Propagated Mask samples gallery", columns=4, visible=False)
|
470 |
-
output_video = gr.Video(visible=False)
|
471 |
-
# output_result_mask = gr.Image()
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
# When new video is uploaded
|
476 |
-
video_in.upload(
|
477 |
-
fn = preprocess_video_in,
|
478 |
-
inputs = [video_in],
|
479 |
-
outputs = [
|
480 |
-
first_frame_path,
|
481 |
-
tracking_points, # update Tracking Points in the gr.State([]) object
|
482 |
-
trackings_input_label, # update Tracking Labels in the gr.State([]) object
|
483 |
-
input_first_frame_image, # hidden component used as ref when clearing points
|
484 |
-
points_map, # Image component where we add new tracking points
|
485 |
-
video_frames_dir, # Array where frames from video_in are deep stored
|
486 |
-
scanned_frames, # Scanned frames by SAM2
|
487 |
-
stored_inference_state, # Sam2 inference state
|
488 |
-
stored_frame_names, #
|
489 |
-
video_in_drawer, # Accordion to hide uploaded video player
|
490 |
-
],
|
491 |
-
queue = False
|
492 |
-
)
|
493 |
-
|
494 |
-
|
495 |
-
# triggered when we click on image to add new points
|
496 |
-
points_map.select(
|
497 |
-
fn = get_point,
|
498 |
-
inputs = [
|
499 |
-
point_type, # "include" or "exclude"
|
500 |
-
tracking_points, # get tracking_points values
|
501 |
-
trackings_input_label, # get tracking label values
|
502 |
-
input_first_frame_image, # gr.State() first frame path
|
503 |
-
],
|
504 |
-
outputs = [
|
505 |
-
tracking_points, # updated with new points
|
506 |
-
trackings_input_label, # updated with corresponding labels
|
507 |
-
points_map, # updated image with points
|
508 |
-
],
|
509 |
-
queue = False
|
510 |
-
)
|
511 |
-
|
512 |
-
# Clear every points clicked and added to the map
|
513 |
-
clear_points_btn.click(
|
514 |
-
fn = clear_points,
|
515 |
-
inputs = input_first_frame_image, # we get the untouched hidden image
|
516 |
-
outputs = [
|
517 |
-
first_frame_path,
|
518 |
-
tracking_points,
|
519 |
-
trackings_input_label,
|
520 |
-
points_map,
|
521 |
-
#stored_inference_state,
|
522 |
-
],
|
523 |
-
queue=False
|
524 |
-
)
|
525 |
-
|
526 |
-
|
527 |
-
change_current.click(
|
528 |
-
fn = switch_working_frame,
|
529 |
-
inputs = [working_frame, scanned_frames, video_frames_dir],
|
530 |
-
outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map],
|
531 |
-
queue=False
|
532 |
-
)
|
533 |
-
|
534 |
-
|
535 |
-
submit_btn.click(
|
536 |
-
fn = get_mask_sam_process,
|
537 |
-
inputs = [
|
538 |
-
stored_inference_state,
|
539 |
-
input_first_frame_image,
|
540 |
-
checkpoint,
|
541 |
-
tracking_points,
|
542 |
-
trackings_input_label,
|
543 |
-
video_frames_dir,
|
544 |
-
scanned_frames,
|
545 |
-
working_frame,
|
546 |
-
available_frames_to_check,
|
547 |
-
],
|
548 |
-
outputs = [
|
549 |
-
change_current,
|
550 |
-
output_result,
|
551 |
-
stored_frame_names,
|
552 |
-
loaded_predictor,
|
553 |
-
stored_inference_state,
|
554 |
-
working_frame,
|
555 |
-
],
|
556 |
-
queue=False
|
557 |
-
)
|
558 |
-
|
559 |
-
reset_prpgt_brn.click(
|
560 |
-
fn = reset_propagation,
|
561 |
-
inputs = [first_frame_path, loaded_predictor, stored_inference_state],
|
562 |
-
outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn],
|
563 |
-
queue=False
|
564 |
)
|
565 |
|
566 |
-
|
567 |
-
fn
|
568 |
-
inputs
|
569 |
-
outputs
|
570 |
-
queue=False
|
571 |
-
).then(
|
572 |
-
fn = propagate_to_all,
|
573 |
-
inputs = [video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame],
|
574 |
-
outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn]
|
575 |
)
|
576 |
|
577 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
|
|
3 |
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
import cv2
|
6 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
from inference.seg import process_image_or_video
|
9 |
+
from config import SAPIENS_LITE_MODELS_PATH
|
10 |
|
11 |
+
def update_model_choices(task):
|
12 |
+
model_choices = list(SAPIENS_LITE_MODELS_PATH[task.lower()].keys())
|
13 |
+
return gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None)
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
@spaces.GPU(duration=120)
|
16 |
+
def process_image(input_image, task, version):
|
17 |
+
if isinstance(input_image, np.ndarray):
|
18 |
+
input_image = Image.fromarray(input_image)
|
|
|
|
|
|
|
19 |
|
20 |
+
result = process_image_or_video(input_image, task=task.lower(), version=version)
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
return result
|
|
|
|
|
23 |
|
24 |
+
def process_video(input_video, task, version):
|
25 |
+
cap = cv2.VideoCapture(input_video)
|
26 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
27 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
28 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
29 |
|
30 |
+
output_video = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
|
|
31 |
|
32 |
+
while cap.isOpened():
|
|
|
|
|
|
|
33 |
ret, frame = cap.read()
|
34 |
+
if not ret:
|
35 |
break
|
36 |
|
37 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
38 |
+
processed_frame = process_image_or_video(frame_rgb, task=task.lower(), version=version)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
if processed_frame is not None:
|
41 |
+
processed_frame_bgr = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
|
42 |
+
output_video.write(processed_frame_bgr)
|
43 |
|
|
|
44 |
cap.release()
|
45 |
+
output_video.release()
|
46 |
|
47 |
+
return 'output_video.mp4'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
with gr.Blocks() as demo:
|
50 |
+
gr.Markdown("# Sapiens Arena 🤸🏽♂️ - WIP devmode")
|
51 |
+
with gr.Tabs():
|
52 |
+
with gr.TabItem('Image'):
|
53 |
+
with gr.Row():
|
54 |
+
with gr.Column():
|
55 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
56 |
+
select_task_image = gr.Radio(
|
57 |
+
["seg", "pose", "depth", "normal"],
|
58 |
+
label="Task",
|
59 |
+
info="Choose the task to perform",
|
60 |
+
value="seg"
|
61 |
+
)
|
62 |
+
model_name_image = gr.Dropdown(
|
63 |
+
label="Model Version",
|
64 |
+
choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()),
|
65 |
+
value="sapiens_0.3b",
|
66 |
+
)
|
67 |
+
with gr.Column():
|
68 |
+
result_image = gr.Image(label="Result")
|
69 |
+
run_button_image = gr.Button("Run")
|
70 |
|
71 |
+
with gr.TabItem('Video'):
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
+
input_video = gr.Video(label="Input Video")
|
75 |
+
select_task_video = gr.Radio(
|
76 |
+
["seg", "pose", "depth", "normal"],
|
77 |
+
label="Task",
|
78 |
+
info="Choose the task to perform",
|
79 |
+
value="seg"
|
80 |
+
)
|
81 |
+
model_name_video = gr.Dropdown(
|
82 |
+
label="Model Version",
|
83 |
+
choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()),
|
84 |
+
value="sapiens_0.3b",
|
85 |
+
)
|
86 |
+
with gr.Column():
|
87 |
+
result_video = gr.Video(label="Result")
|
88 |
+
run_button_video = gr.Button("Run")
|
89 |
+
|
90 |
+
select_task_image.change(fn=update_model_choices, inputs=select_task_image, outputs=model_name_image)
|
91 |
+
select_task_video.change(fn=update_model_choices, inputs=select_task_video, outputs=model_name_video)
|
92 |
+
|
93 |
+
run_button_image.click(
|
94 |
+
fn=process_image,
|
95 |
+
inputs=[input_image, select_task_image, model_name_image],
|
96 |
+
outputs=[result_image],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
)
|
98 |
|
99 |
+
run_button_video.click(
|
100 |
+
fn=process_video,
|
101 |
+
inputs=[input_video, select_task_video, model_name_video],
|
102 |
+
outputs=[result_video],
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
|
105 |
+
if __name__ == "__main__":
|
106 |
+
demo.launch(share=True)
|