|
#!/bin/bash |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
set -x -e |
|
|
|
echo "START TIME: $(date)" |
|
MICRO_BATCH_SIZE=8 |
|
|
|
ROOT_DIR=$YOUR_PROJECT_DIR |
|
DOWNLOAD_MODEL_PATH=$YOUR_PROJECT_DIR/Randeng-T5-784M-QA-Chinese/ |
|
|
|
|
|
if [ ! -d ${ROOT_DIR} ];then |
|
mkdir ${ROOT_DIR} |
|
echo ${ROOT_DIR} created!!!!!!!!!!!!!! |
|
else |
|
echo ${ROOT_DIR} exist!!!!!!!!!!!!!!! |
|
fi |
|
|
|
ZERO_STAGE=1 |
|
|
|
config_json="$ROOT_DIR/ds_config.randeng_t5_dialog_784M.$SLURM_JOBID.json" |
|
export MASTER_PORT=$[RANDOM%10000+30000] |
|
|
|
cat <<EOT > $config_json |
|
{ |
|
"train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE}, |
|
"steps_per_print": 100, |
|
"gradient_clipping": 1.0, |
|
"zero_optimization": { |
|
"stage": $ZERO_STAGE, |
|
"contiguous_gradients": false, |
|
"overlap_comm": true, |
|
"reduce_scatter": true, |
|
"reduce_bucket_size": 50000000, |
|
"allgather_bucket_size": 500000000 |
|
}, |
|
} |
|
EOT |
|
|
|
export PL_DEEPSPEED_CONFIG_PATH=$config_json |
|
export TORCH_EXTENSIONS_DIR=$YOUR_HOME/tmp/torch_extendsions |
|
|
|
strategy=deepspeed_stage_1 |
|
|
|
TRAINER_ARGS=" |
|
--max_epochs 10 \ |
|
--gpus 1 \ |
|
--num_nodes 1 \ |
|
--strategy ${strategy} \ |
|
--default_root_dir $ROOT_DIR \ |
|
--save_ckpt_path $ROOT_DIR/ckpt \ |
|
--save_top_k 5 \ |
|
--every_n_train_steps 100\ |
|
--monitor val_rougeL_fmeasure \ |
|
--mode max \ |
|
--save_last \ |
|
--check_val_every_n_epoch 1 \ |
|
--num_workers 4 \ |
|
--dataloader_workers 4 \ |
|
--replace_sampler_ddp False \ |
|
--accumulate_grad_batches 2 \ |
|
--formator t5style \ |
|
--filename model-{epoch:02d}-{val_loss:.4f}-{val_rougeL_fmeasure:.3f} \ |
|
--precision 16 \ |
|
" |
|
|
|
TRAIN_DATA_PATH=$YOUR_TRAIN_FILE |
|
DEV_DATA_PATH=$YOUR_DEV_FILE |
|
|
|
DATA_ARGS=" |
|
--train_batchsize $MICRO_BATCH_SIZE \ |
|
--val_batchsize $MICRO_BATCH_SIZE \ |
|
--train_file $TRAIN_DATA_PATH \ |
|
--val_file $DEV_DATA_PATH \ |
|
--max_seq_length 512 \ |
|
--max_knowledge_length 425 \ |
|
--max_target_length 128 |
|
" |
|
|
|
MODEL_ARGS=" |
|
--pretrained_model_path $DOWNLOAD_MODEL_PATH \ |
|
--tokenizer_type t5_tokenizer \ |
|
--learning_rate 1e-4 \ |
|
--weight_decay 1e-2 \ |
|
--warmup_ratio 0.1 \ |
|
--sheduler_type polynomial \ |
|
--min_learning_rate 1e-5 \ |
|
" |
|
|
|
SCRIPTS_PATH=$YOUR_PROJECT_DIR/Fengshenbang-LM/fengshen/examples/qa_t5/finetune_t5_cmrc.py |
|
|
|
export CMD=" \ |
|
$SCRIPTS_PATH \ |
|
$TRAINER_ARGS \ |
|
$MODEL_ARGS \ |
|
$DATA_ARGS \ |
|
" |
|
|
|
echo $CMD |
|
|
|
|
|
srun python $CMD |
|
|