#!/bin/bash #SBATCH --job-name=finetune-cmrc #SBATCH --nodes=1 #SBATCH --ntasks-per-node=1 #SBATCH --gres=gpu:1 # number of gpus #SBATCH --cpus-per-task=4 # cpu-cores per task (>1 if multi-threaded tasks) #SBATCH -o $YOUR_PROJECT_DIR/%x-%j.log #SBATCH -e $YOUR_PROJECT_DIR/%x-%j.err set -x -e echo "START TIME: $(date)" MICRO_BATCH_SIZE=8 ROOT_DIR=$YOUR_PROJECT_DIR DOWNLOAD_MODEL_PATH=$YOUR_PROJECT_DIR/Randeng-T5-784M-QA-Chinese/ if [ ! -d ${ROOT_DIR} ];then mkdir ${ROOT_DIR} echo ${ROOT_DIR} created!!!!!!!!!!!!!! else echo ${ROOT_DIR} exist!!!!!!!!!!!!!!! fi ZERO_STAGE=1 config_json="$ROOT_DIR/ds_config.randeng_t5_dialog_784M.$SLURM_JOBID.json" export MASTER_PORT=$[RANDOM%10000+30000] cat < $config_json { "train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE}, "steps_per_print": 100, "gradient_clipping": 1.0, "zero_optimization": { "stage": $ZERO_STAGE, "contiguous_gradients": false, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 50000000, "allgather_bucket_size": 500000000 }, } EOT export PL_DEEPSPEED_CONFIG_PATH=$config_json export TORCH_EXTENSIONS_DIR=$YOUR_HOME/tmp/torch_extendsions # strategy=ddp strategy=deepspeed_stage_1 TRAINER_ARGS=" --max_epochs 10 \ --gpus 1 \ --num_nodes 1 \ --strategy ${strategy} \ --default_root_dir $ROOT_DIR \ --save_ckpt_path $ROOT_DIR/ckpt \ --save_top_k 5 \ --every_n_train_steps 100\ --monitor val_rougeL_fmeasure \ --mode max \ --save_last \ --check_val_every_n_epoch 1 \ --num_workers 4 \ --dataloader_workers 4 \ --replace_sampler_ddp False \ --accumulate_grad_batches 2 \ --formator t5style \ --filename model-{epoch:02d}-{val_loss:.4f}-{val_rougeL_fmeasure:.3f} \ --precision 16 \ " TRAIN_DATA_PATH=$YOUR_TRAIN_FILE DEV_DATA_PATH=$YOUR_DEV_FILE DATA_ARGS=" --train_batchsize $MICRO_BATCH_SIZE \ --val_batchsize $MICRO_BATCH_SIZE \ --train_file $TRAIN_DATA_PATH \ --val_file $DEV_DATA_PATH \ --max_seq_length 512 \ --max_knowledge_length 425 \ --max_target_length 128 " MODEL_ARGS=" --pretrained_model_path $DOWNLOAD_MODEL_PATH \ --tokenizer_type t5_tokenizer \ --learning_rate 1e-4 \ --weight_decay 1e-2 \ --warmup_ratio 0.1 \ --sheduler_type polynomial \ --min_learning_rate 1e-5 \ " SCRIPTS_PATH=$YOUR_PROJECT_DIR/Fengshenbang-LM/fengshen/examples/qa_t5/finetune_t5_cmrc.py export CMD=" \ $SCRIPTS_PATH \ $TRAINER_ARGS \ $MODEL_ARGS \ $DATA_ARGS \ " echo $CMD # conda activate fs # export CUDA_VISIBLE_DEVICES=5 srun python $CMD