Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Optional, Tuple | |
import torch | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
from einops import rearrange | |
from torch import Tensor | |
from torch.distributed import ProcessGroup | |
from videosys.core.parallel_mgr import get_sequence_parallel_size | |
# ====================================================== | |
# Model | |
# ====================================================== | |
def model_sharding(model: torch.nn.Module): | |
global_rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
for _, param in model.named_parameters(): | |
padding_size = (world_size - param.numel() % world_size) % world_size | |
if padding_size > 0: | |
padding_param = torch.nn.functional.pad(param.data.view(-1), [0, padding_size]) | |
else: | |
padding_param = param.data.view(-1) | |
splited_params = padding_param.split(padding_param.numel() // world_size) | |
splited_params = splited_params[global_rank] | |
param.data = splited_params | |
# ====================================================== | |
# AllGather & ReduceScatter | |
# ====================================================== | |
class AsyncAllGatherForTwo(torch.autograd.Function): | |
def forward( | |
ctx: Any, | |
inputs: Tensor, | |
weight: Tensor, | |
bias: Tensor, | |
sp_rank: int, | |
sp_size: int, | |
group: Optional[ProcessGroup] = None, | |
) -> Tuple[Tensor, Any]: | |
""" | |
Returns: | |
outputs: Tensor | |
handle: Optional[Work], if overlap is True | |
""" | |
from torch.distributed._functional_collectives import all_gather_tensor | |
ctx.group = group | |
ctx.sp_rank = sp_rank | |
ctx.sp_size = sp_size | |
# all gather inputs | |
all_inputs = all_gather_tensor(inputs.unsqueeze(0), 0, group) | |
# compute local qkv | |
local_qkv = F.linear(inputs, weight, bias).unsqueeze(0) | |
# remote compute | |
remote_inputs = all_inputs[1 - sp_rank].view(list(local_qkv.shape[:-1]) + [-1]) | |
# compute remote qkv | |
remote_qkv = F.linear(remote_inputs, weight, bias) | |
# concat local and remote qkv | |
if sp_rank == 0: | |
qkv = torch.cat([local_qkv, remote_qkv], dim=0) | |
else: | |
qkv = torch.cat([remote_qkv, local_qkv], dim=0) | |
qkv = rearrange(qkv, "sp b n c -> b (sp n) c") | |
ctx.save_for_backward(inputs, weight, remote_inputs) | |
return qkv | |
def backward(ctx: Any, *grad_outputs) -> Tuple[Tensor, None, None]: | |
from torch.distributed._functional_collectives import reduce_scatter_tensor | |
group = ctx.group | |
sp_rank = ctx.sp_rank | |
sp_size = ctx.sp_size | |
inputs, weight, remote_inputs = ctx.saved_tensors | |
# split qkv_grad | |
qkv_grad = grad_outputs[0] | |
qkv_grad = rearrange(qkv_grad, "b (sp n) c -> sp b n c", sp=sp_size) | |
qkv_grad = torch.chunk(qkv_grad, 2, dim=0) | |
if sp_rank == 0: | |
local_qkv_grad, remote_qkv_grad = qkv_grad | |
else: | |
remote_qkv_grad, local_qkv_grad = qkv_grad | |
# compute remote grad | |
remote_inputs_grad = torch.matmul(remote_qkv_grad, weight).squeeze(0) | |
weight_grad = torch.matmul(remote_qkv_grad.transpose(-1, -2), remote_inputs).squeeze(0).sum(0) | |
bias_grad = remote_qkv_grad.squeeze(0).sum(0).sum(0) | |
# launch async reduce scatter | |
remote_inputs_grad_zero = torch.zeros_like(remote_inputs_grad) | |
if sp_rank == 0: | |
remote_inputs_grad = torch.cat([remote_inputs_grad_zero, remote_inputs_grad], dim=0) | |
else: | |
remote_inputs_grad = torch.cat([remote_inputs_grad, remote_inputs_grad_zero], dim=0) | |
remote_inputs_grad = reduce_scatter_tensor(remote_inputs_grad, "sum", 0, group) | |
# compute local grad and wait for reduce scatter | |
local_input_grad = torch.matmul(local_qkv_grad, weight).squeeze(0) | |
weight_grad += torch.matmul(local_qkv_grad.transpose(-1, -2), inputs).squeeze(0).sum(0) | |
bias_grad += local_qkv_grad.squeeze(0).sum(0).sum(0) | |
# sum remote and local grad | |
inputs_grad = remote_inputs_grad + local_input_grad | |
return inputs_grad, weight_grad, bias_grad, None, None, None | |
class AllGather(torch.autograd.Function): | |
def forward( | |
ctx: Any, | |
inputs: Tensor, | |
group: Optional[ProcessGroup] = None, | |
overlap: bool = False, | |
) -> Tuple[Tensor, Any]: | |
""" | |
Returns: | |
outputs: Tensor | |
handle: Optional[Work], if overlap is True | |
""" | |
assert ctx is not None or not overlap | |
if ctx is not None: | |
ctx.comm_grp = group | |
comm_size = dist.get_world_size(group) | |
if comm_size == 1: | |
return inputs.unsqueeze(0), None | |
buffer_shape = (comm_size,) + inputs.shape | |
outputs = torch.empty(buffer_shape, dtype=inputs.dtype, device=inputs.device) | |
buffer_list = list(torch.chunk(outputs, comm_size, dim=0)) | |
if not overlap: | |
dist.all_gather(buffer_list, inputs, group=group) | |
return outputs, None | |
else: | |
handle = dist.all_gather(buffer_list, inputs, group=group, async_op=True) | |
return outputs, handle | |
def backward(ctx: Any, *grad_outputs) -> Tuple[Tensor, None, None]: | |
return ( | |
ReduceScatter.forward(None, grad_outputs[0], ctx.comm_grp, False)[0], | |
None, | |
None, | |
) | |
class ReduceScatter(torch.autograd.Function): | |
def forward( | |
ctx: Any, | |
inputs: Tensor, | |
group: ProcessGroup, | |
overlap: bool = False, | |
) -> Tuple[Tensor, Any]: | |
""" | |
Returns: | |
outputs: Tensor | |
handle: Optional[Work], if overlap is True | |
""" | |
assert ctx is not None or not overlap | |
if ctx is not None: | |
ctx.comm_grp = group | |
comm_size = dist.get_world_size(group) | |
if comm_size == 1: | |
return inputs.squeeze(0), None | |
if not inputs.is_contiguous(): | |
inputs = inputs.contiguous() | |
output_shape = inputs.shape[1:] | |
outputs = torch.empty(output_shape, dtype=inputs.dtype, device=inputs.device) | |
buffer_list = list(torch.chunk(inputs, comm_size, dim=0)) | |
if not overlap: | |
dist.reduce_scatter(outputs, buffer_list, group=group) | |
return outputs, None | |
else: | |
handle = dist.reduce_scatter(outputs, buffer_list, group=group, async_op=True) | |
return outputs, handle | |
def backward(ctx: Any, *grad_outputs) -> Tuple[Tensor, None, None]: | |
# TODO: support async backward | |
return ( | |
AllGather.forward(None, grad_outputs[0], ctx.comm_grp, False)[0], | |
None, | |
None, | |
) | |
# ====================================================== | |
# AlltoAll | |
# ====================================================== | |
def _all_to_all_func(input_, world_size, group, scatter_dim, gather_dim): | |
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)] | |
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)] | |
dist.all_to_all(output_list, input_list, group=group) | |
return torch.cat(output_list, dim=gather_dim).contiguous() | |
class _AllToAll(torch.autograd.Function): | |
"""All-to-all communication. | |
Args: | |
input_: input matrix | |
process_group: communication group | |
scatter_dim: scatter dimension | |
gather_dim: gather dimension | |
""" | |
def forward(ctx, input_, process_group, scatter_dim, gather_dim): | |
ctx.process_group = process_group | |
ctx.scatter_dim = scatter_dim | |
ctx.gather_dim = gather_dim | |
world_size = dist.get_world_size(process_group) | |
return _all_to_all_func(input_, world_size, process_group, scatter_dim, gather_dim) | |
def backward(ctx, *grad_output): | |
process_group = ctx.process_group | |
scatter_dim = ctx.gather_dim | |
gather_dim = ctx.scatter_dim | |
return_grad = _AllToAll.apply(*grad_output, process_group, scatter_dim, gather_dim) | |
return (return_grad, None, None, None) | |
def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1): | |
return _AllToAll.apply(input_, process_group, scatter_dim, gather_dim) | |
# ====================================================== | |
# Sequence Gather & Split | |
# ====================================================== | |
def _split_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int): | |
# skip if only one rank involved | |
world_size = dist.get_world_size(pg) | |
rank = dist.get_rank(pg) | |
if world_size == 1: | |
return input_ | |
if pad > 0: | |
pad_size = list(input_.shape) | |
pad_size[dim] = pad | |
input_ = torch.cat([input_, torch.zeros(pad_size, dtype=input_.dtype, device=input_.device)], dim=dim) | |
dim_size = input_.size(dim) | |
assert dim_size % world_size == 0, f"dim_size ({dim_size}) is not divisible by world_size ({world_size})" | |
tensor_list = torch.split(input_, dim_size // world_size, dim=dim) | |
output = tensor_list[rank].contiguous() | |
return output | |
def _gather_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int): | |
# skip if only one rank involved | |
input_ = input_.contiguous() | |
world_size = dist.get_world_size(pg) | |
dist.get_rank(pg) | |
if world_size == 1: | |
return input_ | |
# all gather | |
tensor_list = [torch.empty_like(input_) for _ in range(world_size)] | |
assert input_.device.type == "cuda" | |
torch.distributed.all_gather(tensor_list, input_, group=pg) | |
# concat | |
output = torch.cat(tensor_list, dim=dim) | |
if pad > 0: | |
output = output.narrow(dim, 0, output.size(dim) - pad) | |
return output | |
class _GatherForwardSplitBackward(torch.autograd.Function): | |
""" | |
Gather the input sequence. | |
Args: | |
input_: input matrix. | |
process_group: process group. | |
dim: dimension | |
""" | |
def symbolic(graph, input_): | |
return _gather_sequence_func(input_) | |
def forward(ctx, input_, process_group, dim, grad_scale, pad): | |
ctx.process_group = process_group | |
ctx.dim = dim | |
ctx.grad_scale = grad_scale | |
ctx.pad = pad | |
return _gather_sequence_func(input_, process_group, dim, pad) | |
def backward(ctx, grad_output): | |
if ctx.grad_scale == "up": | |
grad_output = grad_output * dist.get_world_size(ctx.process_group) | |
elif ctx.grad_scale == "down": | |
grad_output = grad_output / dist.get_world_size(ctx.process_group) | |
return _split_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None | |
class _SplitForwardGatherBackward(torch.autograd.Function): | |
""" | |
Split sequence. | |
Args: | |
input_: input matrix. | |
process_group: parallel mode. | |
dim: dimension | |
""" | |
def symbolic(graph, input_): | |
return _split_sequence_func(input_) | |
def forward(ctx, input_, process_group, dim, grad_scale, pad): | |
ctx.process_group = process_group | |
ctx.dim = dim | |
ctx.grad_scale = grad_scale | |
ctx.pad = pad | |
return _split_sequence_func(input_, process_group, dim, pad) | |
def backward(ctx, grad_output): | |
if ctx.grad_scale == "up": | |
grad_output = grad_output * dist.get_world_size(ctx.process_group) | |
elif ctx.grad_scale == "down": | |
grad_output = grad_output / dist.get_world_size(ctx.process_group) | |
return _gather_sequence_func(grad_output, ctx.process_group, ctx.pad), None, None, None, None | |
def split_sequence(input_, process_group, dim, grad_scale=1.0, pad=0): | |
return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad) | |
def gather_sequence(input_, process_group, dim, grad_scale=1.0, pad=0): | |
return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad) | |
# ============================== | |
# Pad | |
# ============================== | |
SPTIAL_PAD = 0 | |
TEMPORAL_PAD = 0 | |
def set_spatial_pad(dim_size: int): | |
sp_size = get_sequence_parallel_size() | |
pad = (sp_size - (dim_size % sp_size)) % sp_size | |
global SPTIAL_PAD | |
SPTIAL_PAD = pad | |
def get_spatial_pad() -> int: | |
return SPTIAL_PAD | |
def set_temporal_pad(dim_size: int): | |
sp_size = get_sequence_parallel_size() | |
pad = (sp_size - (dim_size % sp_size)) % sp_size | |
global TEMPORAL_PAD | |
TEMPORAL_PAD = pad | |
def get_temporal_pad() -> int: | |
return TEMPORAL_PAD | |
def all_to_all_with_pad( | |
input_: torch.Tensor, | |
process_group: dist.ProcessGroup, | |
scatter_dim: int = 2, | |
gather_dim: int = 1, | |
scatter_pad: int = 0, | |
gather_pad: int = 0, | |
): | |
if scatter_pad > 0: | |
pad_shape = list(input_.shape) | |
pad_shape[scatter_dim] = scatter_pad | |
pad_tensor = torch.zeros(pad_shape, device=input_.device, dtype=input_.dtype) | |
input_ = torch.cat([input_, pad_tensor], dim=scatter_dim) | |
assert ( | |
input_.shape[scatter_dim] % dist.get_world_size(process_group) == 0 | |
), f"Dimension to scatter ({input_.shape[scatter_dim]}) is not divisible by world size ({dist.get_world_size(process_group)})" | |
input_ = _AllToAll.apply(input_, process_group, scatter_dim, gather_dim) | |
if gather_pad > 0: | |
input_ = input_.narrow(gather_dim, 0, input_.size(gather_dim) - gather_pad) | |
return input_ | |