Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,677 Bytes
07c6a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
from typing import Any, Optional, Tuple
import torch
import torch.distributed as dist
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor
from torch.distributed import ProcessGroup
from videosys.core.parallel_mgr import get_sequence_parallel_size
# ======================================================
# Model
# ======================================================
def model_sharding(model: torch.nn.Module):
global_rank = dist.get_rank()
world_size = dist.get_world_size()
for _, param in model.named_parameters():
padding_size = (world_size - param.numel() % world_size) % world_size
if padding_size > 0:
padding_param = torch.nn.functional.pad(param.data.view(-1), [0, padding_size])
else:
padding_param = param.data.view(-1)
splited_params = padding_param.split(padding_param.numel() // world_size)
splited_params = splited_params[global_rank]
param.data = splited_params
# ======================================================
# AllGather & ReduceScatter
# ======================================================
class AsyncAllGatherForTwo(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
inputs: Tensor,
weight: Tensor,
bias: Tensor,
sp_rank: int,
sp_size: int,
group: Optional[ProcessGroup] = None,
) -> Tuple[Tensor, Any]:
"""
Returns:
outputs: Tensor
handle: Optional[Work], if overlap is True
"""
from torch.distributed._functional_collectives import all_gather_tensor
ctx.group = group
ctx.sp_rank = sp_rank
ctx.sp_size = sp_size
# all gather inputs
all_inputs = all_gather_tensor(inputs.unsqueeze(0), 0, group)
# compute local qkv
local_qkv = F.linear(inputs, weight, bias).unsqueeze(0)
# remote compute
remote_inputs = all_inputs[1 - sp_rank].view(list(local_qkv.shape[:-1]) + [-1])
# compute remote qkv
remote_qkv = F.linear(remote_inputs, weight, bias)
# concat local and remote qkv
if sp_rank == 0:
qkv = torch.cat([local_qkv, remote_qkv], dim=0)
else:
qkv = torch.cat([remote_qkv, local_qkv], dim=0)
qkv = rearrange(qkv, "sp b n c -> b (sp n) c")
ctx.save_for_backward(inputs, weight, remote_inputs)
return qkv
@staticmethod
def backward(ctx: Any, *grad_outputs) -> Tuple[Tensor, None, None]:
from torch.distributed._functional_collectives import reduce_scatter_tensor
group = ctx.group
sp_rank = ctx.sp_rank
sp_size = ctx.sp_size
inputs, weight, remote_inputs = ctx.saved_tensors
# split qkv_grad
qkv_grad = grad_outputs[0]
qkv_grad = rearrange(qkv_grad, "b (sp n) c -> sp b n c", sp=sp_size)
qkv_grad = torch.chunk(qkv_grad, 2, dim=0)
if sp_rank == 0:
local_qkv_grad, remote_qkv_grad = qkv_grad
else:
remote_qkv_grad, local_qkv_grad = qkv_grad
# compute remote grad
remote_inputs_grad = torch.matmul(remote_qkv_grad, weight).squeeze(0)
weight_grad = torch.matmul(remote_qkv_grad.transpose(-1, -2), remote_inputs).squeeze(0).sum(0)
bias_grad = remote_qkv_grad.squeeze(0).sum(0).sum(0)
# launch async reduce scatter
remote_inputs_grad_zero = torch.zeros_like(remote_inputs_grad)
if sp_rank == 0:
remote_inputs_grad = torch.cat([remote_inputs_grad_zero, remote_inputs_grad], dim=0)
else:
remote_inputs_grad = torch.cat([remote_inputs_grad, remote_inputs_grad_zero], dim=0)
remote_inputs_grad = reduce_scatter_tensor(remote_inputs_grad, "sum", 0, group)
# compute local grad and wait for reduce scatter
local_input_grad = torch.matmul(local_qkv_grad, weight).squeeze(0)
weight_grad += torch.matmul(local_qkv_grad.transpose(-1, -2), inputs).squeeze(0).sum(0)
bias_grad += local_qkv_grad.squeeze(0).sum(0).sum(0)
# sum remote and local grad
inputs_grad = remote_inputs_grad + local_input_grad
return inputs_grad, weight_grad, bias_grad, None, None, None
class AllGather(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
inputs: Tensor,
group: Optional[ProcessGroup] = None,
overlap: bool = False,
) -> Tuple[Tensor, Any]:
"""
Returns:
outputs: Tensor
handle: Optional[Work], if overlap is True
"""
assert ctx is not None or not overlap
if ctx is not None:
ctx.comm_grp = group
comm_size = dist.get_world_size(group)
if comm_size == 1:
return inputs.unsqueeze(0), None
buffer_shape = (comm_size,) + inputs.shape
outputs = torch.empty(buffer_shape, dtype=inputs.dtype, device=inputs.device)
buffer_list = list(torch.chunk(outputs, comm_size, dim=0))
if not overlap:
dist.all_gather(buffer_list, inputs, group=group)
return outputs, None
else:
handle = dist.all_gather(buffer_list, inputs, group=group, async_op=True)
return outputs, handle
@staticmethod
def backward(ctx: Any, *grad_outputs) -> Tuple[Tensor, None, None]:
return (
ReduceScatter.forward(None, grad_outputs[0], ctx.comm_grp, False)[0],
None,
None,
)
class ReduceScatter(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
inputs: Tensor,
group: ProcessGroup,
overlap: bool = False,
) -> Tuple[Tensor, Any]:
"""
Returns:
outputs: Tensor
handle: Optional[Work], if overlap is True
"""
assert ctx is not None or not overlap
if ctx is not None:
ctx.comm_grp = group
comm_size = dist.get_world_size(group)
if comm_size == 1:
return inputs.squeeze(0), None
if not inputs.is_contiguous():
inputs = inputs.contiguous()
output_shape = inputs.shape[1:]
outputs = torch.empty(output_shape, dtype=inputs.dtype, device=inputs.device)
buffer_list = list(torch.chunk(inputs, comm_size, dim=0))
if not overlap:
dist.reduce_scatter(outputs, buffer_list, group=group)
return outputs, None
else:
handle = dist.reduce_scatter(outputs, buffer_list, group=group, async_op=True)
return outputs, handle
@staticmethod
def backward(ctx: Any, *grad_outputs) -> Tuple[Tensor, None, None]:
# TODO: support async backward
return (
AllGather.forward(None, grad_outputs[0], ctx.comm_grp, False)[0],
None,
None,
)
# ======================================================
# AlltoAll
# ======================================================
def _all_to_all_func(input_, world_size, group, scatter_dim, gather_dim):
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
dist.all_to_all(output_list, input_list, group=group)
return torch.cat(output_list, dim=gather_dim).contiguous()
class _AllToAll(torch.autograd.Function):
"""All-to-all communication.
Args:
input_: input matrix
process_group: communication group
scatter_dim: scatter dimension
gather_dim: gather dimension
"""
@staticmethod
def forward(ctx, input_, process_group, scatter_dim, gather_dim):
ctx.process_group = process_group
ctx.scatter_dim = scatter_dim
ctx.gather_dim = gather_dim
world_size = dist.get_world_size(process_group)
return _all_to_all_func(input_, world_size, process_group, scatter_dim, gather_dim)
@staticmethod
def backward(ctx, *grad_output):
process_group = ctx.process_group
scatter_dim = ctx.gather_dim
gather_dim = ctx.scatter_dim
return_grad = _AllToAll.apply(*grad_output, process_group, scatter_dim, gather_dim)
return (return_grad, None, None, None)
def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1):
return _AllToAll.apply(input_, process_group, scatter_dim, gather_dim)
# ======================================================
# Sequence Gather & Split
# ======================================================
def _split_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
# skip if only one rank involved
world_size = dist.get_world_size(pg)
rank = dist.get_rank(pg)
if world_size == 1:
return input_
if pad > 0:
pad_size = list(input_.shape)
pad_size[dim] = pad
input_ = torch.cat([input_, torch.zeros(pad_size, dtype=input_.dtype, device=input_.device)], dim=dim)
dim_size = input_.size(dim)
assert dim_size % world_size == 0, f"dim_size ({dim_size}) is not divisible by world_size ({world_size})"
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
output = tensor_list[rank].contiguous()
return output
def _gather_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
# skip if only one rank involved
input_ = input_.contiguous()
world_size = dist.get_world_size(pg)
dist.get_rank(pg)
if world_size == 1:
return input_
# all gather
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
assert input_.device.type == "cuda"
torch.distributed.all_gather(tensor_list, input_, group=pg)
# concat
output = torch.cat(tensor_list, dim=dim)
if pad > 0:
output = output.narrow(dim, 0, output.size(dim) - pad)
return output
class _GatherForwardSplitBackward(torch.autograd.Function):
"""
Gather the input sequence.
Args:
input_: input matrix.
process_group: process group.
dim: dimension
"""
@staticmethod
def symbolic(graph, input_):
return _gather_sequence_func(input_)
@staticmethod
def forward(ctx, input_, process_group, dim, grad_scale, pad):
ctx.process_group = process_group
ctx.dim = dim
ctx.grad_scale = grad_scale
ctx.pad = pad
return _gather_sequence_func(input_, process_group, dim, pad)
@staticmethod
def backward(ctx, grad_output):
if ctx.grad_scale == "up":
grad_output = grad_output * dist.get_world_size(ctx.process_group)
elif ctx.grad_scale == "down":
grad_output = grad_output / dist.get_world_size(ctx.process_group)
return _split_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
Split sequence.
Args:
input_: input matrix.
process_group: parallel mode.
dim: dimension
"""
@staticmethod
def symbolic(graph, input_):
return _split_sequence_func(input_)
@staticmethod
def forward(ctx, input_, process_group, dim, grad_scale, pad):
ctx.process_group = process_group
ctx.dim = dim
ctx.grad_scale = grad_scale
ctx.pad = pad
return _split_sequence_func(input_, process_group, dim, pad)
@staticmethod
def backward(ctx, grad_output):
if ctx.grad_scale == "up":
grad_output = grad_output * dist.get_world_size(ctx.process_group)
elif ctx.grad_scale == "down":
grad_output = grad_output / dist.get_world_size(ctx.process_group)
return _gather_sequence_func(grad_output, ctx.process_group, ctx.pad), None, None, None, None
def split_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad)
def gather_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad)
# ==============================
# Pad
# ==============================
SPTIAL_PAD = 0
TEMPORAL_PAD = 0
def set_spatial_pad(dim_size: int):
sp_size = get_sequence_parallel_size()
pad = (sp_size - (dim_size % sp_size)) % sp_size
global SPTIAL_PAD
SPTIAL_PAD = pad
def get_spatial_pad() -> int:
return SPTIAL_PAD
def set_temporal_pad(dim_size: int):
sp_size = get_sequence_parallel_size()
pad = (sp_size - (dim_size % sp_size)) % sp_size
global TEMPORAL_PAD
TEMPORAL_PAD = pad
def get_temporal_pad() -> int:
return TEMPORAL_PAD
def all_to_all_with_pad(
input_: torch.Tensor,
process_group: dist.ProcessGroup,
scatter_dim: int = 2,
gather_dim: int = 1,
scatter_pad: int = 0,
gather_pad: int = 0,
):
if scatter_pad > 0:
pad_shape = list(input_.shape)
pad_shape[scatter_dim] = scatter_pad
pad_tensor = torch.zeros(pad_shape, device=input_.device, dtype=input_.dtype)
input_ = torch.cat([input_, pad_tensor], dim=scatter_dim)
assert (
input_.shape[scatter_dim] % dist.get_world_size(process_group) == 0
), f"Dimension to scatter ({input_.shape[scatter_dim]}) is not divisible by world size ({dist.get_world_size(process_group)})"
input_ = _AllToAll.apply(input_, process_group, scatter_dim, gather_dim)
if gather_pad > 0:
input_ = input_.narrow(gather_dim, 0, input_.size(gather_dim) - gather_pad)
return input_
|