etweedy's picture
Upload app.py
65c92e7
raw
history blame
7.54 kB
import torch
import streamlit as st
from datasets import Dataset
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForQuestionAnswering,
pipeline,
)
import pandas as pd
########################
### Helper functions ###
########################
# Build trainer using model and tokenizer from Hugging Face repo
@st.cache_resource(show_spinner=False)
def get_pipeline():
"""
Load model and tokenizer from 🤗 repo
and build pipeline
Parameters: None
-----------
Returns:
--------
qa_pipeline : transformers.QuestionAnsweringPipeline
The question answering pipeline object
"""
repo_id = 'etweedy/roberta-base-squad-v2'
qa_pipeline = pipeline(
task = 'question-answering',
model=repo_id,
tokenizer=repo_id,
handle_impossible_answer = True
)
return qa_pipeline
def fill_in_example(i):
"""
Function for context-question example button click
"""
st.session_state['response'] = ''
st.session_state['question'] = ex_q[i]
st.session_state['context'] = ex_c[i]
def clear_boxes():
"""
Function for field clear button click
"""
st.session_state['response'] = ''
st.session_state['question'] = ''
st.session_state['context'] = ''
def get_examples():
"""
Retrieve pre-made examples from a .csv file
Parameters: None
-----------
Returns:
--------
questions, contexts : list, list
Lists of examples of corresponding question-context pairs
"""
examples = pd.read_csv('examples.csv')
questions = list(examples['question'])
contexts = list(examples['context'])
return questions, contexts
#############
### Setup ###
#############
# Set mps or cuda device if available
if torch.backends.mps.is_available():
device = "mps"
elif torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# Initialize session state variables
if 'response' not in st.session_state:
st.session_state['response'] = ''
if 'context' not in st.session_state:
st.session_state['context'] = ''
if 'question' not in st.session_state:
st.session_state['question'] = ''
# Retrieve stored model
with st.spinner('Loading the model...'):
qa_pipeline = get_pipeline()
# Grab example question-context pairs from csv file
ex_q, ex_c = get_examples()
###################
### App content ###
###################
# Intro text
st.header('RoBERTa Q&A model')
st.markdown('''
This app demonstrates the answer-retrieval capabilities of a fine-tuned RoBERTa (Robustly optimized Bidirectional Encoder Representations from Transformers) model.
''')
with st.expander('Click to read more about the model...'):
st.markdown('''
* [Click here](https://huggingface.co/etweedy/roberta-base-squad-v2) to visit the Hugging Face model card for this fine-tuned model.
* To create this model, the [RoBERTa base model](https://huggingface.co/roberta-base) was fine-tuned on Version 2 of [SQuAD (Stanford Question Answering Dataset)](https://huggingface.co/datasets/squad_v2), a dataset of context-question-answer triples.
* The objective of the model is "extractive question answering", the task of retrieving the answer to the question from a given context text corpus.
* SQuAD Version 2 incorporates the 100,000 samples from Version 1.1, along with 50,000 'unanswerable' questions, i.e. samples in the question cannot be answered using the context given.
* The original base RoBERTa model was introduced in [this paper](https://arxiv.org/abs/1907.11692) and [this repository](https://github.com/facebookresearch/fairseq/tree/main/examples/roberta). Here's a citation for that base model:
```bibtex
@article{DBLP:journals/corr/abs-1907-11692,
author = {Yinhan Liu and
Myle Ott and
Naman Goyal and
Jingfei Du and
Mandar Joshi and
Danqi Chen and
Omer Levy and
Mike Lewis and
Luke Zettlemoyer and
Veselin Stoyanov},
title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},
journal = {CoRR},
volume = {abs/1907.11692},
year = {2019},
url = {http://arxiv.org/abs/1907.11692},
archivePrefix = {arXiv},
eprint = {1907.11692},
timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
''')
st.markdown('''
Please type or paste a context paragraph and question you'd like to ask about it. The model will attempt to answer the question, or otherwise will report that it cannot. Your results will appear below the question field when the model is finished running.
Alternatively, you can try an example by clicking one of the buttons below:
''')
# Generate containers in order
example_container = st.container()
input_container = st.container()
response_container = st.container()
###########################
### Populate containers ###
###########################
# Populate example button container
with example_container:
ex_cols = st.columns(len(ex_q)+1)
for i in range(len(ex_q)):
with ex_cols[i]:
st.button(
label = f'Try example {i+1}',
key = f'ex_button_{i+1}',
on_click = fill_in_example,
args=(i,),
)
with ex_cols[-1]:
st.button(
label = "Clear all fields",
key = "clear_button",
on_click = clear_boxes,
)
# Populate user input container
with input_container:
with st.form(key='input_form',clear_on_submit=False):
# Context input field
context = st.text_area(
label='Context',
value=st.session_state['context'],
key='context_field',
label_visibility='hidden',
placeholder='Enter your context paragraph here.',
height=300,
)
# Question input field
question = st.text_input(
label='Question',
value=st.session_state['question'],
key='question_field',
label_visibility='hidden',
placeholder='Enter your question here.',
)
# Form submit button
query_submitted = st.form_submit_button("Submit")
if query_submitted:
# update question, context in session state
st.session_state['question'] = question
st.session_state['context'] = context
with st.spinner('Generating response...'):
# Generate dictionary from inputs
query = {
'context':st.session_state['context'],
'question':st.session_state['question'],
}
# Pass to QA pipeline
response = qa_pipeline(**query)
answer = response['answer']
confidence = response['score']
# Reformat empty answer to message
if answer == '':
answer = "I don't have an answer based on the context provided."
# Update response in session state
st.session_state['response'] = f"""
Answer: {answer}\n
Confidence: {confidence:.2%}
"""
# Display response
with response_container:
st.write(st.session_state['response'])