Spaces:
Runtime error
Runtime error
File size: 7,541 Bytes
d034971 a11b5c0 d034971 a11b5c0 ac4ecec a11b5c0 d034971 a11b5c0 ac4ecec a11b5c0 ac4ecec a11b5c0 ac4ecec d034971 a11b5c0 d034971 e77a114 ac4ecec e77a114 ac4ecec e77a114 a11b5c0 ac4ecec d034971 a11b5c0 d034971 ac4ecec ff48e26 c09673f ff48e26 c09673f e77a114 c09673f ac4ecec c09673f d034971 c09673f a11b5c0 ac4ecec c09673f ac4ecec d034971 ac4ecec d034971 e77a114 d034971 ac4ecec d034971 e77a114 d034971 ac4ecec d034971 ac4ecec c09673f d034971 a11b5c0 ac4ecec d034971 ac4ecec d034971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import torch
import streamlit as st
from datasets import Dataset
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForQuestionAnswering,
pipeline,
)
import pandas as pd
########################
### Helper functions ###
########################
# Build trainer using model and tokenizer from Hugging Face repo
@st.cache_resource(show_spinner=False)
def get_pipeline():
"""
Load model and tokenizer from 🤗 repo
and build pipeline
Parameters: None
-----------
Returns:
--------
qa_pipeline : transformers.QuestionAnsweringPipeline
The question answering pipeline object
"""
repo_id = 'etweedy/roberta-base-squad-v2'
qa_pipeline = pipeline(
task = 'question-answering',
model=repo_id,
tokenizer=repo_id,
handle_impossible_answer = True
)
return qa_pipeline
def fill_in_example(i):
"""
Function for context-question example button click
"""
st.session_state['response'] = ''
st.session_state['question'] = ex_q[i]
st.session_state['context'] = ex_c[i]
def clear_boxes():
"""
Function for field clear button click
"""
st.session_state['response'] = ''
st.session_state['question'] = ''
st.session_state['context'] = ''
def get_examples():
"""
Retrieve pre-made examples from a .csv file
Parameters: None
-----------
Returns:
--------
questions, contexts : list, list
Lists of examples of corresponding question-context pairs
"""
examples = pd.read_csv('examples.csv')
questions = list(examples['question'])
contexts = list(examples['context'])
return questions, contexts
#############
### Setup ###
#############
# Set mps or cuda device if available
if torch.backends.mps.is_available():
device = "mps"
elif torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# Initialize session state variables
if 'response' not in st.session_state:
st.session_state['response'] = ''
if 'context' not in st.session_state:
st.session_state['context'] = ''
if 'question' not in st.session_state:
st.session_state['question'] = ''
# Retrieve stored model
with st.spinner('Loading the model...'):
qa_pipeline = get_pipeline()
# Grab example question-context pairs from csv file
ex_q, ex_c = get_examples()
###################
### App content ###
###################
# Intro text
st.header('RoBERTa Q&A model')
st.markdown('''
This app demonstrates the answer-retrieval capabilities of a fine-tuned RoBERTa (Robustly optimized Bidirectional Encoder Representations from Transformers) model.
''')
with st.expander('Click to read more about the model...'):
st.markdown('''
* [Click here](https://huggingface.co/etweedy/roberta-base-squad-v2) to visit the Hugging Face model card for this fine-tuned model.
* To create this model, the [RoBERTa base model](https://huggingface.co/roberta-base) was fine-tuned on Version 2 of [SQuAD (Stanford Question Answering Dataset)](https://huggingface.co/datasets/squad_v2), a dataset of context-question-answer triples.
* The objective of the model is "extractive question answering", the task of retrieving the answer to the question from a given context text corpus.
* SQuAD Version 2 incorporates the 100,000 samples from Version 1.1, along with 50,000 'unanswerable' questions, i.e. samples in the question cannot be answered using the context given.
* The original base RoBERTa model was introduced in [this paper](https://arxiv.org/abs/1907.11692) and [this repository](https://github.com/facebookresearch/fairseq/tree/main/examples/roberta). Here's a citation for that base model:
```bibtex
@article{DBLP:journals/corr/abs-1907-11692,
author = {Yinhan Liu and
Myle Ott and
Naman Goyal and
Jingfei Du and
Mandar Joshi and
Danqi Chen and
Omer Levy and
Mike Lewis and
Luke Zettlemoyer and
Veselin Stoyanov},
title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},
journal = {CoRR},
volume = {abs/1907.11692},
year = {2019},
url = {http://arxiv.org/abs/1907.11692},
archivePrefix = {arXiv},
eprint = {1907.11692},
timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
''')
st.markdown('''
Please type or paste a context paragraph and question you'd like to ask about it. The model will attempt to answer the question, or otherwise will report that it cannot. Your results will appear below the question field when the model is finished running.
Alternatively, you can try an example by clicking one of the buttons below:
''')
# Generate containers in order
example_container = st.container()
input_container = st.container()
response_container = st.container()
###########################
### Populate containers ###
###########################
# Populate example button container
with example_container:
ex_cols = st.columns(len(ex_q)+1)
for i in range(len(ex_q)):
with ex_cols[i]:
st.button(
label = f'Try example {i+1}',
key = f'ex_button_{i+1}',
on_click = fill_in_example,
args=(i,),
)
with ex_cols[-1]:
st.button(
label = "Clear all fields",
key = "clear_button",
on_click = clear_boxes,
)
# Populate user input container
with input_container:
with st.form(key='input_form',clear_on_submit=False):
# Context input field
context = st.text_area(
label='Context',
value=st.session_state['context'],
key='context_field',
label_visibility='hidden',
placeholder='Enter your context paragraph here.',
height=300,
)
# Question input field
question = st.text_input(
label='Question',
value=st.session_state['question'],
key='question_field',
label_visibility='hidden',
placeholder='Enter your question here.',
)
# Form submit button
query_submitted = st.form_submit_button("Submit")
if query_submitted:
# update question, context in session state
st.session_state['question'] = question
st.session_state['context'] = context
with st.spinner('Generating response...'):
# Generate dictionary from inputs
query = {
'context':st.session_state['context'],
'question':st.session_state['question'],
}
# Pass to QA pipeline
response = qa_pipeline(**query)
answer = response['answer']
confidence = response['score']
# Reformat empty answer to message
if answer == '':
answer = "I don't have an answer based on the context provided."
# Update response in session state
st.session_state['response'] = f"""
Answer: {answer}\n
Confidence: {confidence:.2%}
"""
# Display response
with response_container:
st.write(st.session_state['response'])
|