Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -5,48 +5,37 @@ from torch.utils.data import DataLoader
|
|
5 |
from transformers import (
|
6 |
AutoTokenizer,
|
7 |
AutoModelForQuestionAnswering,
|
8 |
-
|
9 |
-
Trainer,
|
10 |
-
default_data_collator,
|
11 |
)
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
15 |
|
16 |
-
# Set mps or cuda device if available
|
17 |
-
if torch.backends.mps.is_available():
|
18 |
-
device = "mps"
|
19 |
-
elif torch.cuda.is_available():
|
20 |
-
device = "cuda"
|
21 |
-
else:
|
22 |
-
device = "cpu"
|
23 |
-
|
24 |
-
# Initialize session state variables
|
25 |
-
if 'response' not in st.session_state:
|
26 |
-
st.session_state['response'] = ''
|
27 |
-
if 'context' not in st.session_state:
|
28 |
-
st.session_state['context'] = ''
|
29 |
-
if 'question' not in st.session_state:
|
30 |
-
st.session_state['question'] = ''
|
31 |
-
|
32 |
# Build trainer using model and tokenizer from Hugging Face repo
|
33 |
@st.cache_resource(show_spinner=False)
|
34 |
-
def
|
35 |
"""
|
36 |
Load model and tokenizer from 🤗 repo
|
|
|
37 |
Parameters: None
|
38 |
-----------
|
39 |
Returns:
|
40 |
--------
|
41 |
-
|
42 |
-
The
|
43 |
-
tokenizer : transformers.AutoTokenizer
|
44 |
-
The model's pre-trained tokenizer
|
45 |
"""
|
46 |
repo_id = 'etweedy/roberta-base-squad-v2'
|
47 |
model = AutoModelForQuestionAnswering.from_pretrained(repo_id)
|
48 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def fill_in_example(i):
|
52 |
"""
|
@@ -64,9 +53,52 @@ def clear_boxes():
|
|
64 |
st.session_state['question'] = ''
|
65 |
st.session_state['context'] = ''
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# Retrieve stored model
|
68 |
with st.spinner('Loading the model...'):
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
# Intro text
|
72 |
st.header('RoBERTa Q&A model')
|
@@ -111,14 +143,15 @@ Please type or paste a context paragraph and question you'd like to ask about it
|
|
111 |
Alternatively, you can try an example by clicking one of the buttons below:
|
112 |
''')
|
113 |
|
114 |
-
# Grab example question-context pairs from csv file
|
115 |
-
ex_q, ex_c = get_examples()
|
116 |
-
|
117 |
# Generate containers in order
|
118 |
example_container = st.container()
|
119 |
input_container = st.container()
|
120 |
response_container = st.container()
|
121 |
|
|
|
|
|
|
|
|
|
122 |
# Populate example button container
|
123 |
with example_container:
|
124 |
ex_cols = st.columns(len(ex_q)+1)
|
@@ -164,29 +197,18 @@ with input_container:
|
|
164 |
st.session_state['question'] = question
|
165 |
st.session_state['context'] = context
|
166 |
with st.spinner('Generating response...'):
|
167 |
-
# Generate
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
batched = True,
|
180 |
-
fn_kwargs = {
|
181 |
-
'tokenizer':tokenizer,
|
182 |
-
}
|
183 |
-
)
|
184 |
-
# Make answer prediction with model
|
185 |
-
predicted_answers = make_predictions(model, tokenizer,
|
186 |
-
data_proc, data_raw,
|
187 |
-
n_best = 20)
|
188 |
-
answer = predicted_answers[0]['prediction_text']
|
189 |
-
confidence = predicted_answers[0]['confidence']
|
190 |
# Update response in session state
|
191 |
st.session_state['response'] = f"""
|
192 |
Answer: {answer}\n
|
|
|
5 |
from transformers import (
|
6 |
AutoTokenizer,
|
7 |
AutoModelForQuestionAnswering,
|
8 |
+
pipeline,
|
|
|
|
|
9 |
)
|
10 |
+
import pandas as pd
|
11 |
|
12 |
+
########################
|
13 |
+
### Helper functions ###
|
14 |
+
########################
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Build trainer using model and tokenizer from Hugging Face repo
|
17 |
@st.cache_resource(show_spinner=False)
|
18 |
+
def get_pipeline():
|
19 |
"""
|
20 |
Load model and tokenizer from 🤗 repo
|
21 |
+
and build pipeline
|
22 |
Parameters: None
|
23 |
-----------
|
24 |
Returns:
|
25 |
--------
|
26 |
+
qa_pipeline : transformers.QuestionAnsweringPipeline
|
27 |
+
The question answering pipeline object
|
|
|
|
|
28 |
"""
|
29 |
repo_id = 'etweedy/roberta-base-squad-v2'
|
30 |
model = AutoModelForQuestionAnswering.from_pretrained(repo_id)
|
31 |
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
32 |
+
qa_pipeline = pipeline(
|
33 |
+
task = 'question-answering',
|
34 |
+
model=repo_id,
|
35 |
+
tokenizer=repo_id,
|
36 |
+
handle_impossible_answer = True
|
37 |
+
)
|
38 |
+
return qa_pipeline
|
39 |
|
40 |
def fill_in_example(i):
|
41 |
"""
|
|
|
53 |
st.session_state['question'] = ''
|
54 |
st.session_state['context'] = ''
|
55 |
|
56 |
+
def get_examples():
|
57 |
+
"""
|
58 |
+
Retrieve pre-made examples from a .csv file
|
59 |
+
Parameters: None
|
60 |
+
-----------
|
61 |
+
Returns:
|
62 |
+
--------
|
63 |
+
questions, contexts : list, list
|
64 |
+
Lists of examples of corresponding question-context pairs
|
65 |
+
|
66 |
+
"""
|
67 |
+
examples = pd.read_csv('examples.csv')
|
68 |
+
questions = list(examples['question'])
|
69 |
+
contexts = list(examples['context'])
|
70 |
+
return questions, contexts
|
71 |
+
|
72 |
+
#############
|
73 |
+
### Setup ###
|
74 |
+
#############
|
75 |
+
|
76 |
+
# Set mps or cuda device if available
|
77 |
+
if torch.backends.mps.is_available():
|
78 |
+
device = "mps"
|
79 |
+
elif torch.cuda.is_available():
|
80 |
+
device = "cuda"
|
81 |
+
else:
|
82 |
+
device = "cpu"
|
83 |
+
|
84 |
+
# Initialize session state variables
|
85 |
+
if 'response' not in st.session_state:
|
86 |
+
st.session_state['response'] = ''
|
87 |
+
if 'context' not in st.session_state:
|
88 |
+
st.session_state['context'] = ''
|
89 |
+
if 'question' not in st.session_state:
|
90 |
+
st.session_state['question'] = ''
|
91 |
+
|
92 |
# Retrieve stored model
|
93 |
with st.spinner('Loading the model...'):
|
94 |
+
qa_pipeline = get_pipeline()
|
95 |
+
|
96 |
+
# Grab example question-context pairs from csv file
|
97 |
+
ex_q, ex_c = get_examples()
|
98 |
+
|
99 |
+
###################
|
100 |
+
### App content ###
|
101 |
+
###################
|
102 |
|
103 |
# Intro text
|
104 |
st.header('RoBERTa Q&A model')
|
|
|
143 |
Alternatively, you can try an example by clicking one of the buttons below:
|
144 |
''')
|
145 |
|
|
|
|
|
|
|
146 |
# Generate containers in order
|
147 |
example_container = st.container()
|
148 |
input_container = st.container()
|
149 |
response_container = st.container()
|
150 |
|
151 |
+
###########################
|
152 |
+
### Populate containers ###
|
153 |
+
###########################
|
154 |
+
|
155 |
# Populate example button container
|
156 |
with example_container:
|
157 |
ex_cols = st.columns(len(ex_q)+1)
|
|
|
197 |
st.session_state['question'] = question
|
198 |
st.session_state['context'] = context
|
199 |
with st.spinner('Generating response...'):
|
200 |
+
# Generate dictionary from inputs
|
201 |
+
query = {
|
202 |
+
'context':st.session_state['context'],
|
203 |
+
'question':st.session_state['question'],
|
204 |
+
}
|
205 |
+
# Pass to QA pipeline
|
206 |
+
response = qa_pipeline(**query)
|
207 |
+
answer = response['answer']
|
208 |
+
confidence = response['score']
|
209 |
+
# Reformat empty answer to message
|
210 |
+
if answer == '':
|
211 |
+
answer = "I don't have an answer based on the context provided."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
# Update response in session state
|
213 |
st.session_state['response'] = f"""
|
214 |
Answer: {answer}\n
|