Spaces:
Sleeping
Sleeping
from classes import classes | |
import numpy as np | |
from sentence_transformers import SentenceTransformer, util | |
import streamlit as st | |
# Simple sentence transformer | |
model_checkpoint = 'sentence-transformers/paraphrase-distilroberta-base-v1' | |
model = SentenceTransformer(model_checkpoint) | |
# Predefined messages and their embeddings | |
classes_text = np.array(classes) | |
classes_embeddings = model.encode(classes_text, convert_to_numpy=True) | |
assert classes_embeddings.shape[0] == len(classes) | |
# Function to compare the embedding of the human chat/text message with the embeddings of the | |
# predefined messages | |
def convert(sentence_embedding: np.array, class_embeddings: np.array, top_n=5) -> np.array: | |
similarities = np.array(util.cos_sim(sentence_embedding, class_embeddings)).reshape(-1,) | |
top_n_indices = np.argsort(similarities)[::-1][0:top_n] | |
return top_n_indices | |
# Simple title and description for the app | |
st.title('JHG Chat Message Converter') | |
st.write('Converts human chat/text messages into predefined chat messages via a sentence transformer') | |
# Number of predictions to display | |
n_preds = st.slider("Number of predictions to display:", min_value=1, max_value=10, step=1) | |
# Text box to enter a chat/text message | |
text = st.text_area('Enter chat message') | |
if text and n_preds: | |
# Use the sentence transformer and "convert" function to display predicted, predefined messages | |
text_embedding = model.encode(text, convert_to_numpy=True) | |
indices = convert(text_embedding, classes_embeddings, top_n=n_preds) | |
predicted_classes = classes_text[indices] | |
for converted_message in predicted_classes: | |
st.write(converted_message) |