Spaces:
Sleeping
Sleeping
File size: 1,657 Bytes
e9b0055 2534036 8c5c01a 2534036 e9b0055 2534036 e9b0055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from classes import classes
import numpy as np
from sentence_transformers import SentenceTransformer, util
import streamlit as st
# Simple sentence transformer
model_checkpoint = 'sentence-transformers/paraphrase-distilroberta-base-v1'
model = SentenceTransformer(model_checkpoint)
# Predefined messages and their embeddings
classes_text = np.array(classes)
classes_embeddings = model.encode(classes_text, convert_to_numpy=True)
assert classes_embeddings.shape[0] == len(classes)
# Function to compare the embedding of the human chat/text message with the embeddings of the
# predefined messages
def convert(sentence_embedding: np.array, class_embeddings: np.array, top_n=5) -> np.array:
similarities = np.array(util.cos_sim(sentence_embedding, class_embeddings)).reshape(-1,)
top_n_indices = np.argsort(similarities)[::-1][0:top_n]
return top_n_indices
# Simple title and description for the app
st.title('JHG Chat Message Converter')
st.write('Converts human chat/text messages into predefined chat messages via a sentence transformer')
# Number of predictions to display
n_preds = st.slider("Number of predictions to display:", min_value=1, max_value=10, step=1)
# Text box to enter a chat/text message
text = st.text_area('Enter chat message')
if text and n_preds:
# Use the sentence transformer and "convert" function to display predicted, predefined messages
text_embedding = model.encode(text, convert_to_numpy=True)
indices = convert(text_embedding, classes_embeddings, top_n=n_preds)
predicted_classes = classes_text[indices]
for converted_message in predicted_classes:
st.write(converted_message) |