elizabetvaganova commited on
Commit
c0250b4
·
1 Parent(s): ce84ec1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -20
app.py CHANGED
@@ -3,49 +3,40 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
- # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
-
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- # Using a different text-to-speech model (replace 'your_text_to_speech_model' with the model you want to use)
18
- model = SpeechT5ForTextToSpeech.from_pretrained("elizabetvaganova/speech-to-speech-translation-vaganova").to(device)
19
-
20
- # Using a different vocoder model (replace 'your_vocoder_model' with the model you want to use)
21
- vocoder = SpeechT5HifiGan.from_pretrained("elizabetvaganova/speech-to-speech-translation-vaganova").to(device)
22
 
 
23
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
24
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
25
 
26
-
27
  def translate(audio):
28
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
29
  return outputs["text"]
30
 
31
-
32
  def synthesise(text):
33
- inputs = processor(text=text, return_tensors="pt")
34
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
35
  return speech.cpu()
36
 
37
-
38
  def speech_to_speech_translation(audio):
39
  translated_text = translate(audio)
40
  synthesised_speech = synthesise(translated_text)
41
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
42
  return 16000, synthesised_speech
43
 
44
-
45
  title = "Cascaded STST"
46
  description = """
47
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
48
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
49
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
50
  """
51
 
@@ -71,4 +62,4 @@ file_translate = gr.Interface(
71
  with demo:
72
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
73
 
74
- demo.launch()
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import AutoModel, AutoTokenizer, pipeline
 
7
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
 
10
+ # Load speech translation checkpoint
11
+ asr_pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=device)
 
 
 
12
 
13
+ # Load text-to-speech checkpoint and speaker embeddings
14
+ tokenizer = AutoTokenizer.from_pretrained("ttskit/ttskit-tts-ljspeech")
15
+ model = AutoModel.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device)
16
+ vocoder = AutoModel.from_pretrained("ljspeech/vocoder-cryptron").to(device)
 
17
 
18
+ # Sample code to load speaker embeddings (adjust according to the actual format of the dataset)
19
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
20
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
21
 
 
22
  def translate(audio):
23
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
24
  return outputs["text"]
25
 
 
26
  def synthesise(text):
27
+ inputs = tokenizer(text, return_tensors="pt")
28
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
29
  return speech.cpu()
30
 
 
31
  def speech_to_speech_translation(audio):
32
  translated_text = translate(audio)
33
  synthesised_speech = synthesise(translated_text)
34
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
35
  return 16000, synthesised_speech
36
 
 
37
  title = "Cascaded STST"
38
  description = """
39
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses Facebook's [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) model for speech translation, ttskit's [ttskit-tts-ljspeech](https://huggingface.co/ttskit/ttskit-tts-ljspeech) for text-to-speech, and [Vocoder Cryptron](https://huggingface.co/ljspeech/vocoder-cryptron) for vocoding:
 
40
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
41
  """
42
 
 
62
  with demo:
63
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
64
 
65
+ demo.launch()