elizabetvaganova
commited on
Commit
·
c0250b4
1
Parent(s):
ce84ec1
Update app.py
Browse files
app.py
CHANGED
@@ -3,49 +3,40 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
7 |
-
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
#
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="
|
13 |
-
|
14 |
-
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
vocoder = SpeechT5HifiGan.from_pretrained("elizabetvaganova/speech-to-speech-translation-vaganova").to(device)
|
22 |
|
|
|
23 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
24 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
25 |
|
26 |
-
|
27 |
def translate(audio):
|
28 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
29 |
return outputs["text"]
|
30 |
|
31 |
-
|
32 |
def synthesise(text):
|
33 |
-
inputs =
|
34 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
35 |
return speech.cpu()
|
36 |
|
37 |
-
|
38 |
def speech_to_speech_translation(audio):
|
39 |
translated_text = translate(audio)
|
40 |
synthesised_speech = synthesise(translated_text)
|
41 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
42 |
return 16000, synthesised_speech
|
43 |
|
44 |
-
|
45 |
title = "Cascaded STST"
|
46 |
description = """
|
47 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses
|
48 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
49 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
50 |
"""
|
51 |
|
@@ -71,4 +62,4 @@ file_translate = gr.Interface(
|
|
71 |
with demo:
|
72 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
73 |
|
74 |
-
demo.launch()
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import AutoModel, AutoTokenizer, pipeline
|
|
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
+
# Load speech translation checkpoint
|
11 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=device)
|
|
|
|
|
|
|
12 |
|
13 |
+
# Load text-to-speech checkpoint and speaker embeddings
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("ttskit/ttskit-tts-ljspeech")
|
15 |
+
model = AutoModel.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device)
|
16 |
+
vocoder = AutoModel.from_pretrained("ljspeech/vocoder-cryptron").to(device)
|
|
|
17 |
|
18 |
+
# Sample code to load speaker embeddings (adjust according to the actual format of the dataset)
|
19 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
21 |
|
|
|
22 |
def translate(audio):
|
23 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
24 |
return outputs["text"]
|
25 |
|
|
|
26 |
def synthesise(text):
|
27 |
+
inputs = tokenizer(text, return_tensors="pt")
|
28 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
29 |
return speech.cpu()
|
30 |
|
|
|
31 |
def speech_to_speech_translation(audio):
|
32 |
translated_text = translate(audio)
|
33 |
synthesised_speech = synthesise(translated_text)
|
34 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
35 |
return 16000, synthesised_speech
|
36 |
|
|
|
37 |
title = "Cascaded STST"
|
38 |
description = """
|
39 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses Facebook's [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) model for speech translation, ttskit's [ttskit-tts-ljspeech](https://huggingface.co/ttskit/ttskit-tts-ljspeech) for text-to-speech, and [Vocoder Cryptron](https://huggingface.co/ljspeech/vocoder-cryptron) for vocoding:
|
|
|
40 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
41 |
"""
|
42 |
|
|
|
62 |
with demo:
|
63 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
64 |
|
65 |
+
demo.launch()
|