elizabetvaganova commited on
Commit
ce84ec1
·
1 Parent(s): 4776509

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -15,10 +15,10 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
  # Using a different text-to-speech model (replace 'your_text_to_speech_model' with the model you want to use)
18
- model = SpeechT5ForTextToSpeech.from_pretrained("your_text_to_speech_model").to(device)
19
 
20
  # Using a different vocoder model (replace 'your_vocoder_model' with the model you want to use)
21
- vocoder = SpeechT5HifiGan.from_pretrained("your_vocoder_model").to(device)
22
 
23
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
24
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
  # Using a different text-to-speech model (replace 'your_text_to_speech_model' with the model you want to use)
18
+ model = SpeechT5ForTextToSpeech.from_pretrained("elizabetvaganova/speech-to-speech-translation-vaganova").to(device)
19
 
20
  # Using a different vocoder model (replace 'your_vocoder_model' with the model you want to use)
21
+ vocoder = SpeechT5HifiGan.from_pretrained("elizabetvaganova/speech-to-speech-translation-vaganova").to(device)
22
 
23
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
24
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)