elizabetvaganova commited on
Commit
986912d
·
1 Parent(s): c0250b4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -10
app.py CHANGED
@@ -3,40 +3,46 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import AutoModel, AutoTokenizer, pipeline
 
7
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
 
10
- # Load speech translation checkpoint
11
- asr_pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=device)
 
 
 
12
 
13
- # Load text-to-speech checkpoint and speaker embeddings
14
- tokenizer = AutoTokenizer.from_pretrained("ttskit/ttskit-tts-ljspeech")
15
- model = AutoModel.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device)
16
- vocoder = AutoModel.from_pretrained("ljspeech/vocoder-cryptron").to(device)
17
 
18
- # Sample code to load speaker embeddings (adjust according to the actual format of the dataset)
19
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
20
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
21
 
 
22
  def translate(audio):
23
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
24
  return outputs["text"]
25
 
 
26
  def synthesise(text):
27
- inputs = tokenizer(text, return_tensors="pt")
28
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
29
  return speech.cpu()
30
 
 
31
  def speech_to_speech_translation(audio):
32
  translated_text = translate(audio)
33
  synthesised_speech = synthesise(translated_text)
34
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
35
  return 16000, synthesised_speech
36
 
 
37
  title = "Cascaded STST"
38
  description = """
39
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses Facebook's [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) model for speech translation, ttskit's [ttskit-tts-ljspeech](https://huggingface.co/ttskit/ttskit-tts-ljspeech) for text-to-speech, and [Vocoder Cryptron](https://huggingface.co/ljspeech/vocoder-cryptron) for vocoding:
 
40
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
41
  """
42
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
+ # load speech translation checkpoint
12
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
+
14
+ # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
 
19
 
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
+
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
+
29
  def synthesise(text):
30
+ inputs = processor(text=text, return_tensors="pt")
31
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
  return speech.cpu()
33
 
34
+
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
41
+
42
  title = "Cascaded STST"
43
  description = """
44
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
+ [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
47
  """
48