File size: 2,397 Bytes
f5dfce7 d347764 555cb72 d347764 4dc6c4f d347764 6626f2f c737803 6626f2f 1196030 555cb72 1196030 555cb72 1196030 555cb72 1196030 4dc6c4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
python -m pip install SpeechRecognition
import gradio as gr
import numpy as np
import torch
import speech_recognition as sr
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# Load a lightweight text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("ttskit/ttskit-tts-ljspeech")
model = SpeechT5ForTextToSpeech.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("ljspeech/vocoder-cryptron").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def recognize_speech(audio):
recognizer = sr.Recognizer()
with sr.AudioFile(audio) as source:
audio_data = recognizer.record(source)
return recognizer.recognize_google(audio_data)
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = recognize_speech(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses Google Web Speech API for automatic speech recognition, and lightweight text-to-speech and vocoder models.
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()
|