elizabetvaganova
commited on
Commit
·
555cb72
1
Parent(s):
ff760f8
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
|
5 |
from datasets import load_dataset
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor
|
7 |
-
pip install
|
8 |
-
|
9 |
|
10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
# Load Vosk automatic speech recognition model
|
13 |
-
vosk_model = Model("elizabetvaganova/speech-to-speech-translation-vaganova")
|
14 |
-
|
15 |
-
def recognize_speech(audio):
|
16 |
-
recognizer = KaldiRecognizer(vosk_model, 16000)
|
17 |
-
recognizer.AcceptWaveform(audio.data)
|
18 |
-
result = recognizer.FinalResult()
|
19 |
-
return result["text"]
|
20 |
-
|
21 |
# Load a lightweight text-to-speech checkpoint and speaker embeddings
|
22 |
processor = SpeechT5Processor.from_pretrained("ttskit/ttskit-tts-ljspeech")
|
23 |
|
@@ -27,11 +17,11 @@ vocoder = SpeechT5HifiGan.from_pretrained("ljspeech/vocoder-cryptron").to(device
|
|
27 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
28 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
29 |
|
30 |
-
def
|
31 |
-
recognizer =
|
32 |
-
|
33 |
-
|
34 |
-
return
|
35 |
|
36 |
def synthesise(text):
|
37 |
inputs = processor(text=text, return_tensors="pt")
|
@@ -39,14 +29,14 @@ def synthesise(text):
|
|
39 |
return speech.cpu()
|
40 |
|
41 |
def speech_to_speech_translation(audio):
|
42 |
-
translated_text =
|
43 |
synthesised_speech = synthesise(translated_text)
|
44 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
45 |
return 16000, synthesised_speech
|
46 |
|
47 |
title = "Cascaded STST"
|
48 |
description = """
|
49 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses
|
50 |
"""
|
51 |
|
52 |
demo = gr.Blocks()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
import speech_recognition as sr
|
5 |
from datasets import load_dataset
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor
|
7 |
+
pip install SpeechRecognition
|
|
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Load a lightweight text-to-speech checkpoint and speaker embeddings
|
12 |
processor = SpeechT5Processor.from_pretrained("ttskit/ttskit-tts-ljspeech")
|
13 |
|
|
|
17 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
18 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
19 |
|
20 |
+
def recognize_speech(audio):
|
21 |
+
recognizer = sr.Recognizer()
|
22 |
+
with sr.AudioFile(audio) as source:
|
23 |
+
audio_data = recognizer.record(source)
|
24 |
+
return recognizer.recognize_google(audio_data)
|
25 |
|
26 |
def synthesise(text):
|
27 |
inputs = processor(text=text, return_tensors="pt")
|
|
|
29 |
return speech.cpu()
|
30 |
|
31 |
def speech_to_speech_translation(audio):
|
32 |
+
translated_text = recognize_speech(audio)
|
33 |
synthesised_speech = synthesise(translated_text)
|
34 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
35 |
return 16000, synthesised_speech
|
36 |
|
37 |
title = "Cascaded STST"
|
38 |
description = """
|
39 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses Google Web Speech API for automatic speech recognition, and lightweight text-to-speech and vocoder models.
|
40 |
"""
|
41 |
|
42 |
demo = gr.Blocks()
|