Spaces:
Running
Running
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from pathlib import Path | |
from typing import Callable, Dict, List, Optional, Union | |
import torch | |
import torch.nn.functional as F | |
from huggingface_hub.utils import validate_hf_hub_args | |
from safetensors import safe_open | |
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
_get_model_file, | |
is_accelerate_available, | |
is_torch_version, | |
is_transformers_available, | |
logging, | |
) | |
from diffusers.loaders.unet_loader_utils import _maybe_expand_lora_scales | |
if is_transformers_available(): | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection, | |
) | |
from .attention_modify import ( | |
AttnProcessor, | |
IPAdapterAttnProcessor, | |
AttnProcessor2_0, | |
IPAdapterAttnProcessor2_0 | |
) | |
logger = logging.get_logger(__name__) | |
class IPAdapterMixin: | |
"""Mixin for handling IP Adapters.""" | |
def load_ip_adapter( | |
self, | |
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]], | |
subfolder: Union[str, List[str]], | |
weight_name: Union[str, List[str]], | |
image_encoder_folder: Optional[str] = "image_encoder", | |
**kwargs, | |
): | |
""" | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`): | |
Can be either: | |
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
the Hub. | |
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
with [`ModelMixin.save_pretrained`]. | |
- A [torch state | |
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
subfolder (`str` or `List[str]`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. If a | |
list is passed, it should have the same length as `weight_name`. | |
weight_name (`str` or `List[str]`): | |
The name of the weight file to load. If a list is passed, it should have the same length as | |
`weight_name`. | |
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`): | |
The subfolder location of the image encoder within a larger model repository on the Hub or locally. | |
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside | |
`subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g. | |
`image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than | |
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example, | |
`image_encoder_folder="different_subfolder/image_encoder"`. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
resume_download: | |
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 | |
of Diffusers. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
argument to `True` will raise an error. | |
""" | |
# handle the list inputs for multiple IP Adapters | |
if not isinstance(weight_name, list): | |
weight_name = [weight_name] | |
if not isinstance(pretrained_model_name_or_path_or_dict, list): | |
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict] | |
if len(pretrained_model_name_or_path_or_dict) == 1: | |
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name) | |
if not isinstance(subfolder, list): | |
subfolder = [subfolder] | |
if len(subfolder) == 1: | |
subfolder = subfolder * len(weight_name) | |
if len(weight_name) != len(pretrained_model_name_or_path_or_dict): | |
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.") | |
if len(weight_name) != len(subfolder): | |
raise ValueError("`weight_name` and `subfolder` must have the same length.") | |
# Load the main state dict first. | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", None) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) | |
if low_cpu_mem_usage and not is_accelerate_available(): | |
low_cpu_mem_usage = False | |
logger.warning( | |
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
" install accelerate\n```\n." | |
) | |
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `low_cpu_mem_usage=False`." | |
) | |
user_agent = { | |
"file_type": "attn_procs_weights", | |
"framework": "pytorch", | |
} | |
state_dicts = [] | |
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip( | |
pretrained_model_name_or_path_or_dict, weight_name, subfolder | |
): | |
if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
model_file = _get_model_file( | |
pretrained_model_name_or_path_or_dict, | |
weights_name=weight_name, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
) | |
if weight_name.endswith(".safetensors"): | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(model_file, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = load_state_dict(model_file) | |
else: | |
state_dict = pretrained_model_name_or_path_or_dict | |
keys = list(state_dict.keys()) | |
if keys != ["image_proj", "ip_adapter"]: | |
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.") | |
state_dicts.append(state_dict) | |
# load CLIP image encoder here if it has not been registered to the pipeline yet | |
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None: | |
if image_encoder_folder is not None: | |
if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}") | |
if image_encoder_folder.count("/") == 0: | |
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix() | |
else: | |
image_encoder_subfolder = Path(image_encoder_folder).as_posix() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
pretrained_model_name_or_path_or_dict, | |
subfolder=image_encoder_subfolder, | |
low_cpu_mem_usage=low_cpu_mem_usage, | |
).to(self.device, dtype=self.dtype) | |
self.register_modules(image_encoder=image_encoder) | |
else: | |
raise ValueError( | |
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict." | |
) | |
else: | |
logger.warning( | |
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter." | |
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead." | |
) | |
# create feature extractor if it has not been registered to the pipeline yet | |
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None: | |
feature_extractor = CLIPImageProcessor() | |
self.register_modules(feature_extractor=feature_extractor) | |
# load ip-adapter into unet | |
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet | |
unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) | |
extra_loras = unet._load_ip_adapter_loras(state_dicts) | |
if extra_loras != {}: | |
if not USE_PEFT_BACKEND: | |
logger.warning("PEFT backend is required to load these weights.") | |
else: | |
# apply the IP Adapter Face ID LoRA weights | |
peft_config = getattr(unet, "peft_config", {}) | |
for k, lora in extra_loras.items(): | |
if f"faceid_{k}" not in peft_config: | |
self.load_lora_weights(lora, adapter_name=f"faceid_{k}") | |
self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0]) | |
def set_ip_adapter_scale(self, scale): | |
""" | |
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for | |
granular control over each IP-Adapter behavior. A config can be a float or a dictionary. | |
Example: | |
```py | |
# To use original IP-Adapter | |
scale = 1.0 | |
pipeline.set_ip_adapter_scale(scale) | |
# To use style block only | |
scale = { | |
"up": {"block_0": [0.0, 1.0, 0.0]}, | |
} | |
pipeline.set_ip_adapter_scale(scale) | |
# To use style+layout blocks | |
scale = { | |
"down": {"block_2": [0.0, 1.0]}, | |
"up": {"block_0": [0.0, 1.0, 0.0]}, | |
} | |
pipeline.set_ip_adapter_scale(scale) | |
# To use style and layout from 2 reference images | |
scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}] | |
pipeline.set_ip_adapter_scale(scales) | |
``` | |
""" | |
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet | |
if not isinstance(scale, list): | |
scale = [scale] | |
scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0) | |
for attn_name, attn_processor in unet.attn_processors.items(): | |
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): | |
if len(scale_configs) != len(attn_processor.scale): | |
raise ValueError( | |
f"Cannot assign {len(scale_configs)} scale_configs to " | |
f"{len(attn_processor.scale)} IP-Adapter." | |
) | |
elif len(scale_configs) == 1: | |
scale_configs = scale_configs * len(attn_processor.scale) | |
for i, scale_config in enumerate(scale_configs): | |
if isinstance(scale_config, dict): | |
for k, s in scale_config.items(): | |
if attn_name.startswith(k): | |
attn_processor.scale[i] = s | |
else: | |
attn_processor.scale[i] = scale_config | |
def unload_ip_adapter(self): | |
""" | |
Unloads the IP Adapter weights | |
Examples: | |
```python | |
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights. | |
>>> pipeline.unload_ip_adapter() | |
>>> ... | |
``` | |
""" | |
# remove CLIP image encoder | |
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None: | |
self.image_encoder = None | |
self.register_to_config(image_encoder=[None, None]) | |
# remove feature extractor only when safety_checker is None as safety_checker uses | |
# the feature_extractor later | |
if not hasattr(self, "safety_checker"): | |
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None: | |
self.feature_extractor = None | |
self.register_to_config(feature_extractor=[None, None]) | |
# remove hidden encoder | |
self.unet.encoder_hid_proj = None | |
self.config.encoder_hid_dim_type = None | |
# restore original Unet attention processors layers | |
attn_procs = {} | |
for name, value in self.unet.attn_processors.items(): | |
attn_processor_class = ( | |
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor() | |
) | |
attn_procs[name] = ( | |
attn_processor_class | |
if isinstance(value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)) | |
else value.__class__() | |
) | |
self.unet.set_attn_processor(attn_procs) |