File size: 17,123 Bytes
7ef93e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import Callable, Dict, List, Optional, Union

import torch
import torch.nn.functional as F
from huggingface_hub.utils import validate_hf_hub_args
from safetensors import safe_open

from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict


from diffusers.utils import (
    USE_PEFT_BACKEND,
    _get_model_file,
    is_accelerate_available,
    is_torch_version,
    is_transformers_available,
    logging,
)

from diffusers.loaders.unet_loader_utils import _maybe_expand_lora_scales



if is_transformers_available():
    from transformers import (
        CLIPImageProcessor,
        CLIPVisionModelWithProjection,
    )

from .attention_modify import (
    AttnProcessor,
    IPAdapterAttnProcessor,
    AttnProcessor2_0,
    IPAdapterAttnProcessor2_0
    )

logger = logging.get_logger(__name__)


class IPAdapterMixin:
    """Mixin for handling IP Adapters."""

    @validate_hf_hub_args
    def load_ip_adapter(

        self,

        pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],

        subfolder: Union[str, List[str]],

        weight_name: Union[str, List[str]],

        image_encoder_folder: Optional[str] = "image_encoder",

        **kwargs,

    ):
        """

        Parameters:

            pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):

                Can be either:



                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on

                      the Hub.

                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved

                      with [`ModelMixin.save_pretrained`].

                    - A [torch state

                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            subfolder (`str` or `List[str]`):

                The subfolder location of a model file within a larger model repository on the Hub or locally. If a

                list is passed, it should have the same length as `weight_name`.

            weight_name (`str` or `List[str]`):

                The name of the weight file to load. If a list is passed, it should have the same length as

                `weight_name`.

            image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):

                The subfolder location of the image encoder within a larger model repository on the Hub or locally.

                Pass `None` to not load the image encoder. If the image encoder is located in a folder inside

                `subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.

                `image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than

                `subfolder`, you should pass the path to the folder that contains image encoder weights, for example,

                `image_encoder_folder="different_subfolder/image_encoder"`.

            cache_dir (`Union[str, os.PathLike]`, *optional*):

                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache

                is not used.

            force_download (`bool`, *optional*, defaults to `False`):

                Whether or not to force the (re-)download of the model weights and configuration files, overriding the

                cached versions if they exist.

            resume_download:

                Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1

                of Diffusers.

            proxies (`Dict[str, str]`, *optional*):

                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',

                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.

            local_files_only (`bool`, *optional*, defaults to `False`):

                Whether to only load local model weights and configuration files or not. If set to `True`, the model

                won't be downloaded from the Hub.

            token (`str` or *bool*, *optional*):

                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from

                `diffusers-cli login` (stored in `~/.huggingface`) is used.

            revision (`str`, *optional*, defaults to `"main"`):

                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier

                allowed by Git.

            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):

                Speed up model loading only loading the pretrained weights and not initializing the weights. This also

                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.

                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this

                argument to `True` will raise an error.

        """

        # handle the list inputs for multiple IP Adapters
        if not isinstance(weight_name, list):
            weight_name = [weight_name]

        if not isinstance(pretrained_model_name_or_path_or_dict, list):
            pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
        if len(pretrained_model_name_or_path_or_dict) == 1:
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)

        if not isinstance(subfolder, list):
            subfolder = [subfolder]
        if len(subfolder) == 1:
            subfolder = subfolder * len(weight_name)

        if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
            raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")

        if len(weight_name) != len(subfolder):
            raise ValueError("`weight_name` and `subfolder` must have the same length.")

        # Load the main state dict first.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", None)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }
        state_dicts = []
        for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
            pretrained_model_name_or_path_or_dict, weight_name, subfolder
        ):
            if not isinstance(pretrained_model_name_or_path_or_dict, dict):
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                if weight_name.endswith(".safetensors"):
                    state_dict = {"image_proj": {}, "ip_adapter": {}}
                    with safe_open(model_file, framework="pt", device="cpu") as f:
                        for key in f.keys():
                            if key.startswith("image_proj."):
                                state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
                            elif key.startswith("ip_adapter."):
                                state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
                else:
                    state_dict = load_state_dict(model_file)
            else:
                state_dict = pretrained_model_name_or_path_or_dict

            keys = list(state_dict.keys())
            if keys != ["image_proj", "ip_adapter"]:
                raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")

            state_dicts.append(state_dict)

            # load CLIP image encoder here if it has not been registered to the pipeline yet
            if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
                if image_encoder_folder is not None:
                    if not isinstance(pretrained_model_name_or_path_or_dict, dict):
                        logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
                        if image_encoder_folder.count("/") == 0:
                            image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
                        else:
                            image_encoder_subfolder = Path(image_encoder_folder).as_posix()

                        image_encoder = CLIPVisionModelWithProjection.from_pretrained(
                            pretrained_model_name_or_path_or_dict,
                            subfolder=image_encoder_subfolder,
                            low_cpu_mem_usage=low_cpu_mem_usage,
                        ).to(self.device, dtype=self.dtype)
                        self.register_modules(image_encoder=image_encoder)
                    else:
                        raise ValueError(
                            "`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
                        )
                else:
                    logger.warning(
                        "image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
                        "Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
                    )

            # create feature extractor if it has not been registered to the pipeline yet
            if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
                feature_extractor = CLIPImageProcessor()
                self.register_modules(feature_extractor=feature_extractor)

        # load ip-adapter into unet
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)

        extra_loras = unet._load_ip_adapter_loras(state_dicts)
        if extra_loras != {}:
            if not USE_PEFT_BACKEND:
                logger.warning("PEFT backend is required to load these weights.")
            else:
                # apply the IP Adapter Face ID LoRA weights
                peft_config = getattr(unet, "peft_config", {})
                for k, lora in extra_loras.items():
                    if f"faceid_{k}" not in peft_config:
                        self.load_lora_weights(lora, adapter_name=f"faceid_{k}")
                        self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0])

    def set_ip_adapter_scale(self, scale):
        """

        Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for

        granular control over each IP-Adapter behavior. A config can be a float or a dictionary.



        Example:



        ```py

        # To use original IP-Adapter

        scale = 1.0

        pipeline.set_ip_adapter_scale(scale)



        # To use style block only

        scale = {

            "up": {"block_0": [0.0, 1.0, 0.0]},

        }

        pipeline.set_ip_adapter_scale(scale)



        # To use style+layout blocks

        scale = {

            "down": {"block_2": [0.0, 1.0]},

            "up": {"block_0": [0.0, 1.0, 0.0]},

        }

        pipeline.set_ip_adapter_scale(scale)



        # To use style and layout from 2 reference images

        scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]

        pipeline.set_ip_adapter_scale(scales)

        ```

        """
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        if not isinstance(scale, list):
            scale = [scale]
        scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)

        for attn_name, attn_processor in unet.attn_processors.items():
            if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
                if len(scale_configs) != len(attn_processor.scale):
                    raise ValueError(
                        f"Cannot assign {len(scale_configs)} scale_configs to "
                        f"{len(attn_processor.scale)} IP-Adapter."
                    )
                elif len(scale_configs) == 1:
                    scale_configs = scale_configs * len(attn_processor.scale)
                for i, scale_config in enumerate(scale_configs):
                    if isinstance(scale_config, dict):
                        for k, s in scale_config.items():
                            if attn_name.startswith(k):
                                attn_processor.scale[i] = s
                    else:
                        attn_processor.scale[i] = scale_config

    def unload_ip_adapter(self):
        """

        Unloads the IP Adapter weights



        Examples:



        ```python

        >>> # Assuming `pipeline` is already loaded with the IP Adapter weights.

        >>> pipeline.unload_ip_adapter()

        >>> ...

        ```

        """
        # remove CLIP image encoder
        if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
            self.image_encoder = None
            self.register_to_config(image_encoder=[None, None])

        # remove feature extractor only when safety_checker is None as safety_checker uses
        # the feature_extractor later
        if not hasattr(self, "safety_checker"):
            if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
                self.feature_extractor = None
                self.register_to_config(feature_extractor=[None, None])

        # remove hidden encoder
        self.unet.encoder_hid_proj = None
        self.config.encoder_hid_dim_type = None

        # restore original Unet attention processors layers
        attn_procs = {}
        for name, value in self.unet.attn_processors.items():
            attn_processor_class = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
            )
            attn_procs[name] = (
                attn_processor_class
                if isinstance(value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0))
                else value.__class__()
            )
        self.unet.set_attn_processor(attn_procs)