Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
""" | |
Created on Tue Jan 12 08:28:35 2021 | |
@author: rejid4996 | |
""" | |
# packages | |
import os | |
import re | |
import time | |
import base64 | |
import pickle | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from io import BytesIO | |
import preprocessor as p | |
from textblob.classifiers import NaiveBayesClassifier | |
# custum function to clean the dataset (combining tweet_preprocessor and reguar expression) | |
def clean_tweets(df): | |
#set up punctuations we want to be replaced | |
REPLACE_NO_SPACE = re.compile("(\.)|(\;)|(\:)|(\!)|(\')|(\?)|(\,)|(\")|(\|)|(\()|(\))|(\[)|(\])|(\%)|(\$)|(\>)|(\<)|(\{)|(\})") | |
REPLACE_WITH_SPACE = re.compile("(<br\s/><br\s/?)|(-)|(/)|(:).") | |
tempArr = [] | |
for line in df: | |
# send to tweet_processor | |
tmpL = p.clean(line) | |
# remove puctuation | |
tmpL = REPLACE_NO_SPACE.sub("", tmpL.lower()) # convert all tweets to lower cases | |
tmpL = REPLACE_WITH_SPACE.sub(" ", tmpL) | |
tempArr.append(tmpL) | |
return tempArr | |
def to_excel(df): | |
output = BytesIO() | |
writer = pd.ExcelWriter(output, engine='xlsxwriter') | |
df.to_excel(writer, sheet_name='Sheet1') | |
writer.save() | |
processed_data = output.getvalue() | |
return processed_data | |
def get_table_download_link(df): | |
"""Generates a link allowing the data in a given panda dataframe to be downloaded | |
in: dataframe | |
out: href string | |
""" | |
val = to_excel(df) | |
b64 = base64.b64encode(val) # val looks like b'...' | |
return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="classified_data.xlsx">Download file</a>' # decode b'abc' => abc | |
def download_model(model): | |
output_model = pickle.dumps(model) | |
b64 = base64.b64encode(output_model).decode() | |
href = f'<a href="data:file/output_model;base64,{b64}" download="myClassifier.pkl">Download Model .pkl File</a>' | |
st.markdown(href, unsafe_allow_html=True) | |
def main(): | |
"""NLP App with Streamlit""" | |
from PIL import Image | |
wallpaper = Image.open('D 4 Data.jpg') | |
wallpaper = wallpaper.resize((700,350)) | |
st.sidebar.title("Text Classification App 1.0") | |
st.sidebar.success("Please reach out to https://www.linkedin.com/in/deepak-john-reji/ for more queries") | |
st.sidebar.subheader("Classifier using Textblob ") | |
st.info("For more contents subscribe to my Youtube Channel https://www.youtube.com/channel/UCgOwsx5injeaB_TKGsVD5GQ") | |
st.image(wallpaper) | |
options = ("Train the model", "Test the model", "Predict for a new data") | |
a = st.sidebar.empty() | |
value = a.radio("what do you wanna do", options, 0) | |
if value == "Train the model": | |
uploaded_file = st.file_uploader("*Upload your file, make sure you have a column for text that has to be classified and the label", type="xlsx") | |
if uploaded_file: | |
df = pd.read_excel(uploaded_file) | |
option1 = st.sidebar.selectbox( | |
'Select the text column', | |
tuple(df.columns.to_list())) | |
option2 = st.sidebar.selectbox( | |
'Select the label column', | |
tuple(df.columns.to_list())) | |
# clean training data | |
df[option1] = clean_tweets(df[option1]) | |
# Enter the label names | |
label1 = st.sidebar.text_input("Enter the label for '0' value") | |
label2 = st.sidebar.text_input("Enter the label for '1' value") | |
# replace value with pos and neg | |
df[option2] = df[option2].map({0:label1, 1:label2}) | |
gcr_config = st.sidebar.slider(label="choose the training size, longer the size longer the training time", | |
min_value=100, | |
max_value=10000, | |
step=10) | |
#subsetting based on classes | |
df1 = df[df[option2] == label1][0:int(gcr_config/2)] | |
df2 = df[df[option2] == label2][0:int(gcr_config/2)] | |
df_new = pd.concat([df1, df2]).reset_index(drop=True) | |
# convert in the format | |
training_list = [] | |
for i in df_new.index: | |
value = (df_new[option1][i], df_new[option2][i]) | |
training_list.append(value) | |
# run classification | |
run_button = st.sidebar.button(label='Start Training') | |
if run_button: | |
# Train using Naive Bayes | |
start = time.time() # start time | |
cl = NaiveBayesClassifier(training_list[0:gcr_config]) | |
st.success("Congratulations!!! Model trained successfully with an accuracy of "+str(cl.accuracy(training_list) * 100) + str("%")) | |
st.write("Total Time taken for Training :" + str((time.time()-start)/60) + " minutes") | |
# download the model | |
download_model(cl) | |
# testing the model | |
if value == "Test the model": | |
uploaded_file = st.file_uploader("*Upload your model file, make sure its in the right format (currently pickle file)", type="pkl") | |
if uploaded_file: | |
model = pickle.load(uploaded_file) | |
st.success("Congratulations!!! Model upload successfull") | |
if model: | |
value1 = "" | |
test_sentence = st.text_input("Enter the testing sentence") | |
#predict_button = st.button(label='Predict') | |
if test_sentence: | |
st.info("Model Prediction is : " + model.classify(test_sentence)) | |
"\n" | |
st.write("### π² Help me train the model better. How is the prediction?") | |
"\n" | |
correct = st.checkbox("Correct") | |
wrong = st.checkbox("Incorrect") | |
if correct: | |
st.success("Great!!! I am happy for you") | |
st.write("If you would like please try out for more examples") | |
if wrong: | |
st.write("### π² Dont worry!!! Lets add this new data to the model and retrain. ") | |
label = st.text_input("Could you write the actual label, please note the label name should be the same while you trained") | |
#retrain_button = st.button(label='Retrain') | |
if label: | |
new_data = [(test_sentence, label)] | |
model.update(new_data) | |
st.write("### π² Lets classify and see whether model had learned from this example ") | |
st.write("Sentence : " + test_sentence) | |
st.info("New Model Prediction is : " + model.classify(test_sentence)) | |
sec_wrong3 = st.checkbox("It's Correct") | |
sec_wrong1 = st.checkbox("Still Incorrect") | |
sec_wrong2 = st.checkbox("I will go ahead and change the data in excel and retrain the model") | |
if sec_wrong1: | |
st.write("### π² Lets try training with some sentences of this sort") | |
new_sentence = st.text_input("Enter the training sentence") | |
new_label = st.text_input("Enter the training label") | |
st.write("Lets try one last time ") | |
retrain_button1 = st.button(label='Retrain again!') | |
if retrain_button1: | |
new_data1 = [(new_sentence, new_label)] | |
model.update(new_data1) | |
st.write("Sentence : " + new_sentence) | |
st.info("New Model Prediction is : " + model.classify(new_sentence)) | |
# download the model | |
download_model(model) | |
if sec_wrong2: | |
st.info("Great!!! Fingers Crossed") | |
st.write("### π² Please return to your excel file and add more sentences and Train the model again") | |
if sec_wrong3: | |
st.info("Wow!!! Awesome") | |
st.write("Now lets download the updated model") | |
# download the model | |
download_model(model) | |
# predicting for new data | |
if value == "Predict for a new data": | |
uploaded_file3 = st.file_uploader("*Upload your model file, make sure its in the right format (currently pickle file)", type="pkl") | |
if uploaded_file3: | |
model1 = pickle.load(uploaded_file3) | |
st.success("Congratulations!!! Model uploaded successfully") | |
uploaded_file1 = st.file_uploader("*Upload your new data which you have to predict", type="xlsx") | |
if uploaded_file1: | |
st.success("Congratulations!!! Data uploaded successfully") | |
df_valid = pd.read_excel(uploaded_file1) | |
option3 = st.selectbox( | |
'Select the text column which needs to be predicted', | |
tuple(df_valid.columns.to_list())) | |
predict_button1 = st.button(label='Predict for new data') | |
if predict_button1: | |
start1 = time.time() # start time | |
df_valid['predicted'] = df_valid[option3].apply(lambda tweet: model1.classify(tweet)) | |
st.write("### π² Prediction Successfull !!!") | |
st.write("Total No. of sentences: "+ str(len(df_valid))) | |
st.write("Total Time taken for Prediction :" + str((time.time()-start1)/60) + " minutes") | |
st.markdown(get_table_download_link(df_valid), unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() | |