Spaces:
Runtime error
Runtime error
app file
Browse files
app.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Tue Jan 12 08:28:35 2021
|
4 |
+
|
5 |
+
@author: rejid4996
|
6 |
+
"""
|
7 |
+
|
8 |
+
# packages
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
import time
|
12 |
+
import base64
|
13 |
+
import pickle
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import streamlit as st
|
17 |
+
from io import BytesIO
|
18 |
+
import preprocessor as p
|
19 |
+
from textblob.classifiers import NaiveBayesClassifier
|
20 |
+
|
21 |
+
# custum function to clean the dataset (combining tweet_preprocessor and reguar expression)
|
22 |
+
def clean_tweets(df):
|
23 |
+
#set up punctuations we want to be replaced
|
24 |
+
REPLACE_NO_SPACE = re.compile("(\.)|(\;)|(\:)|(\!)|(\')|(\?)|(\,)|(\")|(\|)|(\()|(\))|(\[)|(\])|(\%)|(\$)|(\>)|(\<)|(\{)|(\})")
|
25 |
+
REPLACE_WITH_SPACE = re.compile("(<br\s/><br\s/?)|(-)|(/)|(:).")
|
26 |
+
tempArr = []
|
27 |
+
for line in df:
|
28 |
+
# send to tweet_processor
|
29 |
+
tmpL = p.clean(line)
|
30 |
+
# remove puctuation
|
31 |
+
tmpL = REPLACE_NO_SPACE.sub("", tmpL.lower()) # convert all tweets to lower cases
|
32 |
+
tmpL = REPLACE_WITH_SPACE.sub(" ", tmpL)
|
33 |
+
tempArr.append(tmpL)
|
34 |
+
return tempArr
|
35 |
+
|
36 |
+
def to_excel(df):
|
37 |
+
output = BytesIO()
|
38 |
+
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
39 |
+
df.to_excel(writer, sheet_name='Sheet1')
|
40 |
+
writer.save()
|
41 |
+
processed_data = output.getvalue()
|
42 |
+
return processed_data
|
43 |
+
|
44 |
+
def get_table_download_link(df):
|
45 |
+
"""Generates a link allowing the data in a given panda dataframe to be downloaded
|
46 |
+
in: dataframe
|
47 |
+
out: href string
|
48 |
+
"""
|
49 |
+
val = to_excel(df)
|
50 |
+
b64 = base64.b64encode(val) # val looks like b'...'
|
51 |
+
return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="classified_data.xlsx">Download file</a>' # decode b'abc' => abc
|
52 |
+
|
53 |
+
def download_model(model):
|
54 |
+
output_model = pickle.dumps(model)
|
55 |
+
b64 = base64.b64encode(output_model).decode()
|
56 |
+
href = f'<a href="data:file/output_model;base64,{b64}" download="myClassifier.pkl">Download Model .pkl File</a>'
|
57 |
+
st.markdown(href, unsafe_allow_html=True)
|
58 |
+
|
59 |
+
def main():
|
60 |
+
"""NLP App with Streamlit"""
|
61 |
+
|
62 |
+
from PIL import Image
|
63 |
+
|
64 |
+
wallpaper = Image.open('D 4 Data.jpg')
|
65 |
+
wallpaper = wallpaper.resize((700,350))
|
66 |
+
|
67 |
+
st.sidebar.title("Text Classification App 1.0")
|
68 |
+
st.sidebar.success("Please reach out to https://www.linkedin.com/in/deepak-john-reji/ for more queries")
|
69 |
+
st.sidebar.subheader("Classifier using Textblob ")
|
70 |
+
|
71 |
+
st.info("For more contents subscribe to my Youtube Channel https://www.youtube.com/channel/UCgOwsx5injeaB_TKGsVD5GQ")
|
72 |
+
st.image(wallpaper)
|
73 |
+
|
74 |
+
options = ("Train the model", "Test the model", "Predict for a new data")
|
75 |
+
a = st.sidebar.empty()
|
76 |
+
value = a.radio("what do you wanna do", options, 0)
|
77 |
+
|
78 |
+
if value == "Train the model":
|
79 |
+
|
80 |
+
uploaded_file = st.file_uploader("*Upload your file, make sure you have a column for text that has to be classified and the label", type="xlsx")
|
81 |
+
|
82 |
+
if uploaded_file:
|
83 |
+
|
84 |
+
df = pd.read_excel(uploaded_file)
|
85 |
+
|
86 |
+
option1 = st.sidebar.selectbox(
|
87 |
+
'Select the text column',
|
88 |
+
tuple(df.columns.to_list()))
|
89 |
+
|
90 |
+
option2 = st.sidebar.selectbox(
|
91 |
+
'Select the label column',
|
92 |
+
tuple(df.columns.to_list()))
|
93 |
+
|
94 |
+
# clean training data
|
95 |
+
df[option1] = clean_tweets(df[option1])
|
96 |
+
|
97 |
+
# Enter the label names
|
98 |
+
label1 = st.sidebar.text_input("Enter the label for '0' value")
|
99 |
+
label2 = st.sidebar.text_input("Enter the label for '1' value")
|
100 |
+
|
101 |
+
# replace value with pos and neg
|
102 |
+
df[option2] = df[option2].map({0:label1, 1:label2})
|
103 |
+
|
104 |
+
gcr_config = st.sidebar.slider(label="choose the training size, longer the size longer the training time",
|
105 |
+
min_value=100,
|
106 |
+
max_value=10000,
|
107 |
+
step=10)
|
108 |
+
|
109 |
+
#subsetting based on classes
|
110 |
+
df1 = df[df[option2] == label1][0:int(gcr_config/2)]
|
111 |
+
df2 = df[df[option2] == label2][0:int(gcr_config/2)]
|
112 |
+
|
113 |
+
df_new = pd.concat([df1, df2]).reset_index(drop=True)
|
114 |
+
|
115 |
+
|
116 |
+
# convert in the format
|
117 |
+
training_list = []
|
118 |
+
for i in df_new.index:
|
119 |
+
value = (df_new[option1][i], df_new[option2][i])
|
120 |
+
training_list.append(value)
|
121 |
+
|
122 |
+
# run classification
|
123 |
+
run_button = st.sidebar.button(label='Start Training')
|
124 |
+
|
125 |
+
if run_button:
|
126 |
+
|
127 |
+
# Train using Naive Bayes
|
128 |
+
start = time.time() # start time
|
129 |
+
cl = NaiveBayesClassifier(training_list[0:gcr_config])
|
130 |
+
|
131 |
+
st.success("Congratulations!!! Model trained successfully with an accuracy of "+str(cl.accuracy(training_list) * 100) + str("%"))
|
132 |
+
st.write("Total Time taken for Training :" + str((time.time()-start)/60) + " minutes")
|
133 |
+
|
134 |
+
# download the model
|
135 |
+
download_model(cl)
|
136 |
+
|
137 |
+
# testing the model
|
138 |
+
if value == "Test the model":
|
139 |
+
uploaded_file = st.file_uploader("*Upload your model file, make sure its in the right format (currently pickle file)", type="pkl")
|
140 |
+
if uploaded_file:
|
141 |
+
model = pickle.load(uploaded_file)
|
142 |
+
st.success("Congratulations!!! Model upload successfull")
|
143 |
+
|
144 |
+
if model:
|
145 |
+
value1 = ""
|
146 |
+
test_sentence = st.text_input("Enter the testing sentence")
|
147 |
+
|
148 |
+
#predict_button = st.button(label='Predict')
|
149 |
+
|
150 |
+
if test_sentence:
|
151 |
+
st.info("Model Prediction is : " + model.classify(test_sentence))
|
152 |
+
|
153 |
+
"\n"
|
154 |
+
st.write("### π² Help me train the model better. How is the prediction?")
|
155 |
+
"\n"
|
156 |
+
correct = st.checkbox("Correct")
|
157 |
+
wrong = st.checkbox("Incorrect")
|
158 |
+
|
159 |
+
if correct:
|
160 |
+
st.success("Great!!! I am happy for you")
|
161 |
+
st.write("If you would like please try out for more examples")
|
162 |
+
|
163 |
+
if wrong:
|
164 |
+
st.write("### π² Dont worry!!! Lets add this new data to the model and retrain. ")
|
165 |
+
label = st.text_input("Could you write the actual label, please note the label name should be the same while you trained")
|
166 |
+
#retrain_button = st.button(label='Retrain')
|
167 |
+
if label:
|
168 |
+
new_data = [(test_sentence, label)]
|
169 |
+
model.update(new_data)
|
170 |
+
|
171 |
+
st.write("### π² Lets classify and see whether model had learned from this example ")
|
172 |
+
|
173 |
+
st.write("Sentence : " + test_sentence)
|
174 |
+
st.info("New Model Prediction is : " + model.classify(test_sentence))
|
175 |
+
|
176 |
+
sec_wrong3 = st.checkbox("It's Correct")
|
177 |
+
sec_wrong1 = st.checkbox("Still Incorrect")
|
178 |
+
sec_wrong2 = st.checkbox("I will go ahead and change the data in excel and retrain the model")
|
179 |
+
|
180 |
+
|
181 |
+
if sec_wrong1:
|
182 |
+
st.write("### π² Lets try training with some sentences of this sort")
|
183 |
+
new_sentence = st.text_input("Enter the training sentence")
|
184 |
+
new_label = st.text_input("Enter the training label")
|
185 |
+
|
186 |
+
st.write("Lets try one last time ")
|
187 |
+
retrain_button1 = st.button(label='Retrain again!')
|
188 |
+
|
189 |
+
if retrain_button1:
|
190 |
+
new_data1 = [(new_sentence, new_label)]
|
191 |
+
model.update(new_data1)
|
192 |
+
|
193 |
+
st.write("Sentence : " + new_sentence)
|
194 |
+
st.info("New Model Prediction is : " + model.classify(new_sentence))
|
195 |
+
|
196 |
+
# download the model
|
197 |
+
download_model(model)
|
198 |
+
|
199 |
+
if sec_wrong2:
|
200 |
+
st.info("Great!!! Fingers Crossed")
|
201 |
+
st.write("### π² Please return to your excel file and add more sentences and Train the model again")
|
202 |
+
|
203 |
+
if sec_wrong3:
|
204 |
+
st.info("Wow!!! Awesome")
|
205 |
+
st.write("Now lets download the updated model")
|
206 |
+
# download the model
|
207 |
+
download_model(model)
|
208 |
+
|
209 |
+
# predicting for new data
|
210 |
+
if value == "Predict for a new data":
|
211 |
+
uploaded_file3 = st.file_uploader("*Upload your model file, make sure its in the right format (currently pickle file)", type="pkl")
|
212 |
+
if uploaded_file3:
|
213 |
+
model1 = pickle.load(uploaded_file3)
|
214 |
+
st.success("Congratulations!!! Model uploaded successfully")
|
215 |
+
|
216 |
+
uploaded_file1 = st.file_uploader("*Upload your new data which you have to predict", type="xlsx")
|
217 |
+
if uploaded_file1:
|
218 |
+
st.success("Congratulations!!! Data uploaded successfully")
|
219 |
+
|
220 |
+
df_valid = pd.read_excel(uploaded_file1)
|
221 |
+
|
222 |
+
option3 = st.selectbox(
|
223 |
+
'Select the text column which needs to be predicted',
|
224 |
+
tuple(df_valid.columns.to_list()))
|
225 |
+
|
226 |
+
predict_button1 = st.button(label='Predict for new data')
|
227 |
+
|
228 |
+
if predict_button1:
|
229 |
+
start1 = time.time() # start time
|
230 |
+
df_valid['predicted'] = df_valid[option3].apply(lambda tweet: model1.classify(tweet))
|
231 |
+
|
232 |
+
st.write("### π² Prediction Successfull !!!")
|
233 |
+
|
234 |
+
st.write("Total No. of sentences: "+ str(len(df_valid)))
|
235 |
+
st.write("Total Time taken for Prediction :" + str((time.time()-start1)/60) + " minutes")
|
236 |
+
|
237 |
+
st.markdown(get_table_download_link(df_valid), unsafe_allow_html=True)
|
238 |
+
|
239 |
+
if __name__ == "__main__":
|
240 |
+
main()
|