File size: 5,613 Bytes
6a112d0
 
 
 
 
8e9513f
6a112d0
 
 
 
 
2ad594d
6a112d0
 
 
 
 
2ad594d
6a112d0
 
2ad594d
6a112d0
 
2ad594d
6a112d0
d5a1a51
 
 
 
 
 
6a112d0
 
 
d5a1a51
 
6a112d0
 
 
 
 
 
d5a1a51
 
 
6a112d0
 
d5a1a51
6a112d0
 
 
d5a1a51
6a112d0
 
d5a1a51
6a112d0
d5a1a51
6a112d0
 
 
 
 
d5a1a51
 
6a112d0
 
 
 
 
 
 
d5a1a51
6a112d0
d5a1a51
 
6a112d0
 
 
4da6941
6a112d0
 
 
 
d5a1a51
 
 
6a112d0
 
 
 
 
 
 
d5a1a51
6a112d0
 
d5a1a51
 
 
 
 
 
6a112d0
 
 
 
 
 
d5a1a51
6a112d0
d5a1a51
 
 
 
 
6a112d0
d5a1a51
6a112d0
d5a1a51
 
6a112d0
d5a1a51
 
 
 
 
 
6a112d0
 
d5a1a51
6a112d0
d5a1a51
 
 
6a112d0
 
d5a1a51
6a112d0
 
 
d5a1a51
6a112d0
 
 
 
d5a1a51
 
6a112d0
 
 
 
 
d5a1a51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import pandas as pd
import numpy as np
import pickle


categorical_features = ['Manufacturer', 'CPU', 'RAM Type', "Screen Resolution"]
numerical_features = ['CPU Speed (GHz)', 'RAM (GB)', 'Bus (MHz)', 'Storage (GB)', 'CPU brand modifier',
                      'Screen Size (inch)', 'Refresh Rate (Hz)', 'Weight (kg)', 'Battery']
label = ['Price (VND)']

with open("ohe.pkl", "rb") as f:
    ohe = pickle.load(f)


def load_model(model):
    if model == "XGBRegressor":
        with open("XGBRegressor.pkl", "rb") as f:
            pred_model = pickle.load(f)
    elif model == "RandomForestRegressor":
        with open("RandomForestRegressor.pkl", "rb") as f:
            pred_model = pickle.load(f)
    elif model == "GradientBoostingRegressor":
        with open("GradientBoostingRegressor.pkl", "rb") as f:
            pred_model = pickle.load(f)
    elif model == "AdaBoostRegressor":
        with open("AdaBoostRegressor.pkl", "rb") as f:
            pred_model = pickle.load(f)
    elif model == "BaggingRegressor":
        with open("BaggingRegressor.pkl", "rb") as f:
            pred_model = pickle.load(f)
    return pred_model


def predict(model, brand, cpu, cpu_brand_type, cpu_hz, gpu, ram_type, ram, ram_bus, storage, screen_resolution,
            screen_ratio, refresh_rate, screen_size, battery, weight
            ):
    pred_model = load_model(model)
    cate_data = {
        "Manufacturer": [brand],
        "CPU": [cpu],
        "RAM Type": [ram_type],
        "Screen Resolution": [screen_resolution],
        "GPU manufacturer": [gpu],
        "Screen Ratio": [screen_ratio]
    }
    nume_data = {
        "CPU brand modifier": [cpu_brand_type],
        "CPU Speed (GHz)": [cpu_hz],
        "RAM (GB)": [ram],
        "Bus (MHz)": [ram_bus],
        "Storage (GB)": [storage],
        "Screen Size (inch)": [screen_size],
        "Refresh Rate (Hz)": [refresh_rate],
        "Weight (kg)": [weight],
        "Battery": [battery],

    }
    cate_data = pd.DataFrame(cate_data)
    nume_data = pd.DataFrame(nume_data)
    cate_data = ohe.transform(cate_data)
    cate_data = pd.DataFrame(cate_data, columns=ohe.get_feature_names_out())
    data = pd.concat([nume_data, cate_data], axis=1)
    return round(float(np.exp(pred_model.predict(np.array(data))[0])) / 1_000_000, 2)


with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
    # add gr title to the middle of the page
    gr.Markdown("# Laptop Price Prediction")

    with gr.Row():
        Model = gr.Dropdown(
            label="Model",
            choices=["XGBRegressor", "RandomForestRegressor", "GradientBoostingRegressor",
                     "AdaBoostRegressor", "BaggingRegressor",],
            value="XGBRegressor",
        )

        Brand = gr.Dropdown(
            label="Brand",
            choices=['acer', 'asus', 'dell', 'hp', 'lenovo', 'lg', 'msi'],
            value='acer'
        )

    gr.Markdown("## **CPU & GPU**")

    with gr.Row():

        CPUBrand = gr.Dropdown(label="CPU", choices=[
            "AMD Gen 4.0th", "AMD Gen 5.0th", "AMD Gen 6.0th", "AMD Gen 7.0th",
            "Intel Gen 11.0th", "Intel Gen 12.0th", "Intel Gen 13.0th"],
            value="Intel Gen 12.0th"
        )

        CPUBrandType = gr.Radio(label="CPU Type", choices=[3, 5, 7, 9], value=7)

    with gr.Row():
        CPUHz = gr.Slider(label="CPU Speed (GHz)", minimum=1.0, maximum=5.0, step=0.1, value=4.2, interactive=True)
        GPU = gr.Dropdown(label="GPU", choices=["AMD", "NVIDIA", "Intel"], value="Intel")

    gr.Markdown("## **RAM & Storage**")

    with gr.Row():
        RAMType = gr.Dropdown(
            label="RAM Type",
            choices=["DDR4", "LPDDR4", "LPDDR4X", "DDR5", "LPDDR5", "LPDDR5X"],
            value="DDR5"
        )

        RAM = gr.Radio(label="RAM (GB)", choices=[8, 16, 32, 64, 128], value=16)

    with gr.Row():
        RAMBus = gr.Slider(label="Bus (MHz)", minimum=1600, maximum=6400, step=400, value=3200, interactive=True)
        Storage = gr.Radio(label="Storage (GB)", choices=[256, 512, 1024, 2048], value=512)

    gr.Markdown("## **Screen**")

    with gr.Row():
        ScreenResolution = gr.Dropdown(label="Screen Resolution", choices=[
            "720p", "1080p", "2k", "3k", "4k"], value="1080p"
        )
        ScreenRatio = gr.Radio(label="Screen Ratio", choices=[
            "16:9", "16:10", "3:2"], value="16:9")

    with gr.Row():
        ScreenSize = gr.Radio(label="Screen Size (inch)", choices=[13, 14, 15, 16, 17], value=14)
        RefreshRate = gr.Radio(label="Refresh Rate (Hz)", choices=[60, 90, 120, 165, 144, 240], value=60)

    gr.Markdown("## **Other Features**")

    with gr.Row():
        Battery = gr.Radio(label="Battery (Wh)", choices=[40, 50, 60, 70, 80], value=60)
        Weight = gr.Radio(label="Weight (kg)", choices=[1.0, 1.5, 2.0, 2.5, 3.0], value=1.5)

    # Output Prediction
    gr.Markdown("## **Prediction**")

    with gr.Row():

        output = gr.Number(label="Prediction (Million VND)", info="Click Submit to predict")

    with gr.Row():
        submit_button = gr.Button("Submit")
        submit_button.click(fn=predict,
                            outputs=output,
                            inputs=[Model, Brand, CPUBrand, CPUBrandType, CPUHz, GPU, RAMType, RAM, RAMBus, Storage,
                                    ScreenResolution, ScreenRatio, RefreshRate, ScreenSize, Battery, Weight],
                            queue=True,
                            )
        clear_button = gr.ClearButton(components=[output], value="Clear")

if __name__ == "__main__":
    demo.launch()