Spaces:
Runtime error
Runtime error
dinhdat1110
commited on
Commit
·
6a112d0
1
Parent(s):
da64bd6
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
|
6 |
+
categorical_features = ['Manufacturer', 'CPU', 'RAM Type', "Screen Resolution"]
|
7 |
+
numerical_features = ['CPU Speed (GHz)', 'RAM (GB)', 'Bus (MHz)', 'Storage (GB)', 'CPU brand modifier',
|
8 |
+
'Screen Size (inch)', 'Refresh Rate (Hz)', 'Weight (kg)', 'Battery']
|
9 |
+
label = ['Price (VND)']
|
10 |
+
|
11 |
+
with open("./checkpoint/ohe.pkl", "rb") as f:
|
12 |
+
ohe = pickle.load(f)
|
13 |
+
|
14 |
+
|
15 |
+
def load_model(model):
|
16 |
+
if model == "XGBRegressor":
|
17 |
+
with open("./checkpoint/XGBRegressor.pkl", "rb") as f:
|
18 |
+
pred_model = pickle.load(f)
|
19 |
+
elif model == "RandomForestRegressor":
|
20 |
+
with open("./checkpoint/RandomForestRegressor.pkl", "rb") as f:
|
21 |
+
pred_model = pickle.load(f)
|
22 |
+
elif model == "GradientBoostingRegressor":
|
23 |
+
with open("./checkpoint/GradientBoostingRegressor.pkl", "rb") as f:
|
24 |
+
pred_model = pickle.load(f)
|
25 |
+
return pred_model
|
26 |
+
|
27 |
+
|
28 |
+
def predict(brand, cpu, cpu_brand_type, cpu_hz, ram_type, ram, ram_bus,
|
29 |
+
screen_resolution, refresh_rate, screen_size,
|
30 |
+
storage, battery, weight, model
|
31 |
+
):
|
32 |
+
pred_model = load_model(model)
|
33 |
+
cate_data = {
|
34 |
+
"Manufacturer": [brand],
|
35 |
+
"CPU": [cpu],
|
36 |
+
"RAM Type": [ram_type],
|
37 |
+
"Screen Resolution": [screen_resolution]
|
38 |
+
}
|
39 |
+
nume_data = {
|
40 |
+
"CPU Speed (GHz)": [cpu_hz],
|
41 |
+
"RAM (GB)": [ram],
|
42 |
+
"Bus (MHz)": [ram_bus],
|
43 |
+
"CPU brand modifier": [cpu_brand_type],
|
44 |
+
"Screen Size (inch)": [screen_size],
|
45 |
+
"Refresh Rate (Hz)": [refresh_rate],
|
46 |
+
"Storage (GB)": [storage],
|
47 |
+
"Battery": [battery],
|
48 |
+
"Weight (kg)": [weight]
|
49 |
+
}
|
50 |
+
cate_data = pd.DataFrame(cate_data)
|
51 |
+
nume_data = pd.DataFrame(nume_data)
|
52 |
+
cate_data = ohe.transform(cate_data)
|
53 |
+
cate_data = pd.DataFrame(cate_data, columns=ohe.get_feature_names_out())
|
54 |
+
data = pd.concat([cate_data, nume_data], axis=1)
|
55 |
+
return round(float(pred_model.predict(np.array(data))[0]), 2)
|
56 |
+
|
57 |
+
|
58 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
59 |
+
# add gr title to the middle of the page
|
60 |
+
gr.Markdown("# Laptop Price Prediction")
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
model = gr.Dropdown(
|
64 |
+
label="Model",
|
65 |
+
choices=["XGBRegressor", "RandomForestRegressor", "GradientBoostingRegressor"],
|
66 |
+
value="XGBRegressor",
|
67 |
+
)
|
68 |
+
|
69 |
+
Brand = gr.Radio(
|
70 |
+
label="Brand",
|
71 |
+
choices=['acer', 'asus', 'dell', 'hp', 'lenovo', 'lg', 'msi'],
|
72 |
+
value='acer'
|
73 |
+
)
|
74 |
+
gr.Markdown("## **CPU**")
|
75 |
+
with gr.Row():
|
76 |
+
|
77 |
+
CPUBrand = gr.Dropdown(label="CPU", choices=[
|
78 |
+
"AMD Gen 4.0th", "AMD Gen 5.0th", "AMD Gen 6.0th", "AMD Gen 7.0th",
|
79 |
+
"Intel Gen 11.0th", "Intel Gen 12.0th", "Intel Gen 13.0th"],
|
80 |
+
value="Intel Gen 12.0th"
|
81 |
+
)
|
82 |
+
CPUHz = gr.Slider(label="CPU Speed (GHz)", minimum=1.0, maximum=5.0, step=0.1, value=2.0, interactive=True)
|
83 |
+
CPUBrandType = gr.Radio(label="CPU Type", choices=[3, 5, 7, 9], value=7)
|
84 |
+
|
85 |
+
gr.Markdown("## **RAM**")
|
86 |
+
with gr.Row():
|
87 |
+
RAMType = gr.Dropdown(
|
88 |
+
label="RAM Type",
|
89 |
+
choices=["DDR4", "LPDDR4", "LPDDR4X", "DDR5", "LPDDR5", "LPDDR5X"],
|
90 |
+
value="DDR5"
|
91 |
+
)
|
92 |
+
RAMBus = gr.Slider(label="Bus (MHz)", minimum=1600, maximum=6400, step=400, value=3200, interactive=True)
|
93 |
+
RAM = gr.Radio(label="RAM (GB)", choices=[8, 16, 32, 64, 128], value=16)
|
94 |
+
gr.Markdown("## **Screen**")
|
95 |
+
with gr.Row():
|
96 |
+
ScreenResolution = gr.Dropdown(
|
97 |
+
label="Screen Resolution",
|
98 |
+
choices=["1366x768", "1920x1080", "1920x1200", "2560x1440", "2560x1600", "3840x2160"],
|
99 |
+
value="1920x1080"
|
100 |
+
)
|
101 |
+
ScreenSize = gr.Radio(label="Screen Size (inch)", choices=[13.3, 14.0, 15.6, 17.3], value=15.6)
|
102 |
+
RefreshRate = gr.Radio(label="Refresh Rate (Hz)", choices=[60, 120, 144, 240], value=60)
|
103 |
+
|
104 |
+
gr.Markdown("## **Other Features**")
|
105 |
+
with gr.Row():
|
106 |
+
Battery = gr.Radio(label="Battery (Wh)", choices=[40, 50, 60, 70, 80])
|
107 |
+
Weight = gr.Radio(label="Weight (kg)", choices=[1.0, 1.5, 2.0, 2.5, 3.0])
|
108 |
+
Storage = gr.Radio(label="Storage (GB)", choices=[256, 512, 1024, 2048], value=512)
|
109 |
+
# Output Prediction
|
110 |
+
gr.Markdown("## **Prediction**")
|
111 |
+
with gr.Row():
|
112 |
+
|
113 |
+
output = gr.Number(label="Prediction (Million VND)", info="Click Submit to predict")
|
114 |
+
with gr.Row():
|
115 |
+
submit_button = gr.Button("Submit")
|
116 |
+
submit_button.click(fn=predict,
|
117 |
+
outputs=output,
|
118 |
+
inputs=[Brand, CPUBrand, CPUBrandType, CPUHz, RAMType, RAM, RAMBus,
|
119 |
+
ScreenResolution, RefreshRate, ScreenSize, Storage, Battery, Weight, model
|
120 |
+
],
|
121 |
+
queue=True,
|
122 |
+
)
|
123 |
+
clear_button = gr.ClearButton(components=[output], value="Clear")
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
demo.launch(max_threads=50, debug=True, prevent_thread_lock=True, show_error=True, share=True)
|