Spaces:
Sleeping
Sleeping
File size: 15,952 Bytes
ac059f4 f3f4634 b01c87d e3ca5f7 ac059f4 b566033 ac059f4 e3ca5f7 ac059f4 bc21614 5bd16c2 f3f4634 bc21614 b1581a7 bc21614 b566033 bc21614 ac059f4 5bd16c2 ac059f4 f3f4634 ac059f4 b01c87d f3f4634 ac059f4 99122c4 5bd16c2 ac059f4 881d56d b01c87d c940f25 e3ca5f7 fa490b8 e3ca5f7 881d56d 2f3fb32 d51eb6d 2f3fb32 881d56d e3ca5f7 2f3fb32 09b9691 c940f25 e3ca5f7 7053a14 b61e699 09b9691 e3ca5f7 09b9691 e3ca5f7 fa490b8 c940f25 fa490b8 e3ca5f7 881d56d 3815be3 e3ca5f7 f3f4634 ac059f4 c940f25 f3f4634 c940f25 09b9691 e3ca5f7 f3f4634 c940f25 f3f4634 ac059f4 f3f4634 e3ca5f7 f3f4634 e32ae3e 49febdc e32ae3e 49febdc e32ae3e 49febdc e32ae3e f3f4634 4c6c719 ac059f4 5bd16c2 ac059f4 128981d ac059f4 f3f4634 128981d ac059f4 5bd16c2 ac059f4 f3f4634 e32ae3e 426f465 e32ae3e 426f465 e32ae3e 9f388b6 e32ae3e 3391d3e e32ae3e 881d56d e32ae3e 881d56d e32ae3e a8b7c75 e32ae3e a8b7c75 4c6c719 e32ae3e a8b7c75 4c6c719 e32ae3e e3ca5f7 e32ae3e e3ca5f7 e32ae3e e3ca5f7 f3f4634 e32ae3e 03f09ee f3f4634 09b9691 e32ae3e 4cc9b99 09b9691 ac059f4 4c6c719 b61e699 09b9691 2f3fb32 b61e699 09b9691 b61e699 09b9691 b61e699 4c6c719 f3f4634 322cc3a f3f4634 ac059f4 03f09ee ac059f4 f3f4634 e3ca5f7 f3f4634 b61e699 d51eb6d f3f4634 ac059f4 128981d ac059f4 f3f4634 03f09ee 75a7169 03f09ee 881d56d e3ca5f7 09b9691 e3ca5f7 881d56d b61e699 2f3fb32 881d56d fa490b8 881d56d d51eb6d 881d56d fa490b8 ac059f4 c940f25 f3f4634 c940f25 f3f4634 ac059f4 551e904 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
from pathlib import Path
from typing import Tuple
import yaml
import tempfile
import uuid
import shutil
from dataclasses import dataclass, asdict
import numpy as np
import audiotools as at
import argbind
import torch
import gradio as gr
from vampnet.interface import Interface
from vampnet import mask as pmask
# Interface = argbind.bind(Interface)
# AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
interface = Interface(
coarse_ckpt="./models/vampnet/coarse.pth",
coarse2fine_ckpt="./models/vampnet/c2f.pth",
codec_ckpt="./models/vampnet/codec.pth",
wavebeat_ckpt="./models/wavebeat.pth",
device="cuda" if torch.cuda.is_available() else "cpu",
)
# loader = AudioLoader()
print(f"interface device is {interface.device}")
# dataset = at.data.datasets.AudioDataset(
# loader,
# sample_rate=interface.codec.sample_rate,
# duration=interface.coarse.chunk_size_s,
# n_examples=5000,
# without_replacement=True,
# )
OUT_DIR = Path("gradio-outputs")
OUT_DIR.mkdir(exist_ok=True, parents=True)
def load_audio(file):
print(file)
filepath = file.name
sig = at.AudioSignal.salient_excerpt(
filepath,
duration=interface.coarse.chunk_size_s
)
sig = interface.preprocess(sig)
out_dir = OUT_DIR / str(uuid.uuid4())
out_dir.mkdir(parents=True, exist_ok=True)
sig.write(out_dir / "input.wav")
return sig.path_to_file
def load_example_audio():
return "./assets/example.wav"
def _vamp(data, return_mask=False):
# remove any old files in the output directory (from previous runs)
shutil.rmtree(OUT_DIR)
OUT_DIR.mkdir()
out_dir = OUT_DIR / str(uuid.uuid4())
out_dir.mkdir()
sig = at.AudioSignal(data[input_audio])
z = interface.encode(sig)
ncc = data[n_conditioning_codebooks]
# build the mask
mask = pmask.linear_random(z, data[rand_mask_intensity])
mask = pmask.mask_and(
mask, pmask.inpaint(
z,
interface.s2t(data[prefix_s]),
interface.s2t(data[suffix_s])
)
)
mask = pmask.mask_and(
mask, pmask.periodic_mask(
z,
data[periodic_p],
data[periodic_w],
random_roll=True
)
)
if data[onset_mask_width] > 0:
mask = pmask.mask_or(
mask, pmask.onset_mask(sig, z, interface, width=data[onset_mask_width])
)
if data[beat_mask_width] > 0:
beat_mask = interface.make_beat_mask(
sig,
after_beat_s=(data[beat_mask_width]/1000),
mask_upbeats=not data[beat_mask_downbeats],
)
mask = pmask.mask_and(mask, beat_mask)
# these should be the last two mask ops
mask = pmask.dropout(mask, data[dropout])
mask = pmask.codebook_unmask(mask, ncc)
print(f"created mask with: linear random {data[rand_mask_intensity]}, inpaint {data[prefix_s]}:{data[suffix_s]}, periodic {data[periodic_p]}:{data[periodic_w]}, dropout {data[dropout]}, codebook unmask {ncc}, onset mask {data[onset_mask_width]}, num steps {data[num_steps]}, init temp {data[temp]}, use coarse2fine {data[use_coarse2fine]}")
# save the mask as a txt file
np.savetxt(out_dir / "mask.txt", mask[:,0,:].long().cpu().numpy())
zv, mask_z = interface.coarse_vamp(
z,
mask=mask,
sampling_steps=data[num_steps],
temperature=float(data[temp]*10),
return_mask=True,
typical_filtering=data[typical_filtering],
typical_mass=data[typical_mass],
typical_min_tokens=data[typical_min_tokens],
gen_fn=interface.coarse.generate,
)
if use_coarse2fine:
zv = interface.coarse_to_fine(zv, temperature=data[temp])
sig = interface.to_signal(zv).cpu()
print("done")
sig.write(out_dir / "output.wav")
if return_mask:
mask = interface.to_signal(mask_z).cpu()
mask.write(out_dir / "mask.wav")
return sig.path_to_file, mask.path_to_file
else:
return sig.path_to_file
def vamp(data):
return _vamp(data, return_mask=True)
def api_vamp(data):
return _vamp(data, return_mask=False)
def save_vamp(data):
out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
out_dir.mkdir(parents=True, exist_ok=True)
sig_in = at.AudioSignal(data[input_audio])
sig_out = at.AudioSignal(data[output_audio])
sig_in.write(out_dir / "input.wav")
sig_out.write(out_dir / "output.wav")
_data = {
"temp": data[temp],
"prefix_s": data[prefix_s],
"suffix_s": data[suffix_s],
"rand_mask_intensity": data[rand_mask_intensity],
"num_steps": data[num_steps],
"notes": data[notes_text],
"periodic_period": data[periodic_p],
"periodic_width": data[periodic_w],
"n_conditioning_codebooks": data[n_conditioning_codebooks],
"use_coarse2fine": data[use_coarse2fine],
"stretch_factor": data[stretch_factor],
}
# save with yaml
with open(out_dir / "data.yaml", "w") as f:
yaml.dump(_data, f)
import zipfile
zip_path = out_dir.with_suffix(".zip")
with zipfile.ZipFile(zip_path, "w") as zf:
for file in out_dir.iterdir():
zf.write(file, file.name)
return f"saved! your save code is {out_dir.stem}", zip_path
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("# VampNet")
gr.Markdown("""## Description:
This is a demo of VampNet, a masked generative music model capable of doing music variations.
You can control the extent and nature of variation with a set of manual controls and presets.
Use this interface to experiment with different mask settings and explore the audio outputs.
""")
gr.Markdown("""
## Instructions:
1. You can start by uploading some audio, or by loading the example audio.
2. Choose a preset for the vamp operation, or manually adjust the controls to customize the mask settings. Click the load preset button.
3. Click the "generate (vamp)!!!" button to generate audio. Listen to the output audio, and the masked audio to hear the mask hints.
4. Optionally, you can add some notes and save the result.
5. You can also use the output as the new input and continue experimenting!
""")
with gr.Row():
with gr.Column():
manual_audio_upload = gr.File(
label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
file_types=["audio"]
)
load_example_audio_button = gr.Button("or load example audio")
input_audio = gr.Audio(
label="input audio",
interactive=False,
type="filepath",
)
audio_mask = gr.Audio(
label="audio mask (listen to this to hear the mask hints)",
interactive=False,
type="filepath",
)
# connect widgets
load_example_audio_button.click(
fn=load_example_audio,
inputs=[],
outputs=[ input_audio]
)
manual_audio_upload.change(
fn=load_audio,
inputs=[manual_audio_upload],
outputs=[ input_audio]
)
# mask settings
with gr.Column():
presets = {
"unconditional": {
"periodic_p": 0,
"onset_mask_width": 0,
"beat_mask_width": 0,
"beat_mask_downbeats": False,
},
"slight periodic variation": {
"periodic_p": 7,
"onset_mask_width": 0,
"beat_mask_width": 0,
"beat_mask_downbeats": False,
},
"strong periodic variation": {
"periodic_p": 13,
"onset_mask_width": 5,
"beat_mask_width": 0,
"beat_mask_downbeats": False,
},
"very strong periodic variation": {
"periodic_p": 17,
"onset_mask_width": 5,
"beat_mask_width": 0,
"beat_mask_downbeats": False,
},
"beat-driven variation": {
"periodic_p": 0,
"onset_mask_width": 0,
"beat_mask_width": 20,
"beat_mask_downbeats": False,
},
"beat-driven variation (downbeats only, strong)": {
"periodic_p": 0,
"onset_mask_width": 0,
"beat_mask_width": 20,
"beat_mask_downbeats": True,
},
}
preset = gr.Dropdown(
label="preset",
choices=list(presets.keys()),
value="strong periodic variation",
)
load_preset_button = gr.Button("load_preset")
with gr.Accordion("manual controls", open=True):
periodic_p = gr.Slider(
label="periodic prompt (0 - unconditional, 2 - lots of hints, 8 - a couple of hints, 16 - occasional hint, 32 - very occasional hint, etc)",
minimum=0,
maximum=128,
step=1,
value=13,
)
onset_mask_width = gr.Slider(
label="onset mask width (multiplies with the periodic mask, 1 step ~= 10milliseconds) ",
minimum=0,
maximum=20,
step=1,
value=5,
)
beat_mask_width = gr.Slider(
label="beat mask width (in milliseconds)",
minimum=0,
maximum=200,
value=0,
)
beat_mask_downbeats = gr.Checkbox(
label="beat mask downbeats only?",
value=False
)
with gr.Accordion("extras ", open=False):
rand_mask_intensity = gr.Slider(
label="random mask intensity. (If this is less than 1, scatters prompts throughout the audio, should be between 0.9 and 1.0)",
minimum=0.0,
maximum=1.0,
value=1.0
)
periodic_w = gr.Slider(
label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
minimum=1,
maximum=20,
step=1,
value=1,
)
n_conditioning_codebooks = gr.Number(
label="number of conditioning codebooks. probably 0",
value=0,
precision=0,
)
stretch_factor = gr.Slider(
label="time stretch factor",
minimum=0,
maximum=64,
step=1,
value=1,
)
preset_outputs = {
periodic_p,
onset_mask_width,
beat_mask_width,
beat_mask_downbeats,
}
def load_preset(_preset):
return tuple(presets[_preset].values())
load_preset_button.click(
fn=load_preset,
inputs=[preset],
outputs=preset_outputs
)
with gr.Accordion("prefix/suffix prompts", open=False):
prefix_s = gr.Slider(
label="prefix hint length (seconds)",
minimum=0.0,
maximum=10.0,
value=0.0
)
suffix_s = gr.Slider(
label="suffix hint length (seconds)",
minimum=0.0,
maximum=10.0,
value=0.0
)
temp = gr.Slider(
label="temperature",
minimum=0.0,
maximum=10.0,
value=1.8
)
with gr.Accordion("sampling settings", open=False):
typical_filtering = gr.Checkbox(
label="typical filtering ",
value=False
)
typical_mass = gr.Slider(
label="typical mass (should probably stay between 0.1 and 0.5)",
minimum=0.01,
maximum=0.99,
value=0.15
)
typical_min_tokens = gr.Slider(
label="typical min tokens (should probably stay between 1 and 256)",
minimum=1,
maximum=256,
step=1,
value=64
)
use_coarse2fine = gr.Checkbox(
label="use coarse2fine",
value=True
)
num_steps = gr.Slider(
label="number of steps (should normally be between 12 and 36)",
minimum=1,
maximum=128,
step=1,
value=36
)
dropout = gr.Slider(
label="mask dropout",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0
)
# mask settings
with gr.Column():
vamp_button = gr.Button("generate (vamp)!!!")
output_audio = gr.Audio(
label="output audio",
interactive=False,
type="filepath"
)
notes_text = gr.Textbox(
label="type any notes about the generated audio here",
value="",
interactive=True
)
save_button = gr.Button("save vamp")
download_file = gr.File(
label="vamp to download will appear here",
interactive=False
)
use_as_input_button = gr.Button("use output as input")
thank_you = gr.Markdown("")
_inputs = {
input_audio,
num_steps,
temp,
prefix_s, suffix_s,
rand_mask_intensity,
periodic_p, periodic_w,
n_conditioning_codebooks,
dropout,
use_coarse2fine,
stretch_factor,
onset_mask_width,
typical_filtering,
typical_mass,
typical_min_tokens,
beat_mask_width,
beat_mask_downbeats
}
# connect widgets
vamp_button.click(
fn=vamp,
inputs=_inputs,
outputs=[output_audio, audio_mask],
)
api_vamp_button = gr.Button("api vamp", visible=False)
api_vamp_button.click(
fn=api_vamp,
inputs=_inputs,
outputs=[output_audio],
api_name="vamp"
)
use_as_input_button.click(
fn=lambda x: x,
inputs=[output_audio],
outputs=[input_audio]
)
save_button.click(
fn=save_vamp,
inputs=_inputs | {notes_text, output_audio},
outputs=[thank_you, download_file]
)
demo.queue().launch()
|