Hugo Flores Garcia commited on
Commit
322cc3a
·
1 Parent(s): 8544bbf

moving out

Browse files
demo.py CHANGED
@@ -65,7 +65,10 @@ def vamp(
65
  mask_periodic_amt, beat_unmask_dur,
66
  mask_dwn_chk, dwn_factor,
67
  mask_up_chk, up_factor,
68
- num_vamps, mode, use_beats, num_steps, snap_to_beats
 
 
 
69
  ):
70
  # try:
71
  print(input_audio)
@@ -89,7 +92,7 @@ def vamp(
89
  mask_upbeats=mask_up_chk,
90
  downbeat_downsample_factor=dwn_factor if dwn_factor > 0 else None,
91
  beat_downsample_factor=up_factor if up_factor > 0 else None,
92
- dropout=0.7,
93
  invert=True
94
  )
95
  print(beat_mask)
@@ -106,6 +109,10 @@ def vamp(
106
  suffix_dur_s=suffix_s,
107
  num_vamps=num_vamps,
108
  downsample_factor=mask_periodic_amt,
 
 
 
 
109
  intensity=rand_mask_intensity,
110
  ext_mask=beat_mask,
111
  verbose=True,
@@ -126,6 +133,7 @@ def vamp(
126
  suffix_dur_s=prefix_s, # suffix should be same length as prefix
127
  num_loops=num_vamps,
128
  downsample_factor=mask_periodic_amt,
 
129
  intensity=rand_mask_intensity,
130
  ext_mask=beat_mask,
131
  verbose=True,
@@ -150,7 +158,9 @@ def save_vamp(
150
  mask_periodic_amt, beat_unmask_dur,
151
  mask_dwn_chk, dwn_factor,
152
  mask_up_chk, up_factor,
153
- num_vamps, mode, output_audio, notes, use_beats, num_steps, snap_to_beats
 
 
154
  ):
155
  out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
156
  out_dir.mkdir(parents=True, exist_ok=True)
@@ -179,6 +189,11 @@ def save_vamp(
179
  "snap_to_beats": snap_to_beats,
180
  "mode": mode,
181
  "notes": notes,
 
 
 
 
 
182
  }
183
 
184
  # save with yaml
@@ -287,6 +302,12 @@ with gr.Blocks() as demo:
287
  # mask settings
288
  with gr.Column():
289
 
 
 
 
 
 
 
290
  mask_periodic_amt = gr.Slider(
291
  label="periodic hint (0.0 means no hint, 2 - lots of hints, 8 - a couple of hints, 16 - occasional hint, 32 - very occasional hint, etc)",
292
  minimum=0,
@@ -294,11 +315,29 @@ with gr.Blocks() as demo:
294
  step=1,
295
  value=9,
296
  )
297
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
 
299
  rand_mask_intensity = gr.Slider(
300
  label="random mask intensity. (If this is less than 1, scatters tiny hints throughout the audio, should be between 0.9 and 1.0)",
301
- minimum=0.0,
302
  maximum=1.0,
303
  value=1.0
304
  )
@@ -343,7 +382,7 @@ with gr.Blocks() as demo:
343
 
344
  num_steps = gr.Slider(
345
  label="number of steps (should normally be between 12 and 36)",
346
- minimum=4,
347
  maximum=128,
348
  step=1,
349
  value=36
@@ -379,6 +418,13 @@ with gr.Blocks() as demo:
379
  maximum=3.0,
380
  value=0.07
381
  )
 
 
 
 
 
 
 
382
  with gr.Accordion("downbeat settings", open=False):
383
  mask_dwn_chk = gr.Checkbox(
384
  label="hint downbeats",
@@ -427,7 +473,10 @@ with gr.Blocks() as demo:
427
  mask_periodic_amt, beat_unmask_dur,
428
  mask_dwn_chk, dwn_factor,
429
  mask_up_chk, up_factor,
430
- num_vamps, mode, use_beats, num_steps, snap_to_beats
 
 
 
431
  ],
432
  outputs=[output_audio, audio_mask]
433
  )
@@ -442,7 +491,10 @@ with gr.Blocks() as demo:
442
  mask_up_chk, up_factor,
443
  num_vamps, mode,
444
  output_audio,
445
- notes_text, use_beats, num_steps, snap_to_beats
 
 
 
446
  ],
447
  outputs=[thank_you, download_file]
448
  )
 
65
  mask_periodic_amt, beat_unmask_dur,
66
  mask_dwn_chk, dwn_factor,
67
  mask_up_chk, up_factor,
68
+ num_vamps, mode, use_beats, num_steps, snap_to_beats,
69
+ beat_unmask_drop, mask_periodic_width,
70
+ mask_periodic_dropout, mask_periodic_width_dropout,
71
+ n_conditioning_codebooks
72
  ):
73
  # try:
74
  print(input_audio)
 
92
  mask_upbeats=mask_up_chk,
93
  downbeat_downsample_factor=dwn_factor if dwn_factor > 0 else None,
94
  beat_downsample_factor=up_factor if up_factor > 0 else None,
95
+ dropout=beat_unmask_drop,
96
  invert=True
97
  )
98
  print(beat_mask)
 
109
  suffix_dur_s=suffix_s,
110
  num_vamps=num_vamps,
111
  downsample_factor=mask_periodic_amt,
112
+ periodic_width=mask_periodic_width,
113
+ periodic_dropout=mask_periodic_dropout,
114
+ periodic_width_dropout=mask_periodic_width_dropout,
115
+ n_conditioning_codebooks=n_conditioning_codebooks if n_conditioning_codebooks > 0 else None,
116
  intensity=rand_mask_intensity,
117
  ext_mask=beat_mask,
118
  verbose=True,
 
133
  suffix_dur_s=prefix_s, # suffix should be same length as prefix
134
  num_loops=num_vamps,
135
  downsample_factor=mask_periodic_amt,
136
+ periodic_width=mask_periodic_width,
137
  intensity=rand_mask_intensity,
138
  ext_mask=beat_mask,
139
  verbose=True,
 
158
  mask_periodic_amt, beat_unmask_dur,
159
  mask_dwn_chk, dwn_factor,
160
  mask_up_chk, up_factor,
161
+ num_vamps, mode, output_audio, notes, use_beats, num_steps, snap_to_beats,
162
+ beat_unmask_drop, mask_periodic_width, mask_periodic_dropout, mask_periodic_width_dropout,
163
+ n_conditioning_codebooks
164
  ):
165
  out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
166
  out_dir.mkdir(parents=True, exist_ok=True)
 
189
  "snap_to_beats": snap_to_beats,
190
  "mode": mode,
191
  "notes": notes,
192
+ "beat_unmask_drop": beat_unmask_drop,
193
+ "mask_periodic_width": mask_periodic_width,
194
+ "mask_periodic_dropout": mask_periodic_dropout,
195
+ "mask_periodic_width_dropout": mask_periodic_width_dropout,
196
+ "n_conditioning_codebooks": n_conditioning_codebooks
197
  }
198
 
199
  # save with yaml
 
302
  # mask settings
303
  with gr.Column():
304
 
305
+ n_conditioning_codebooks = gr.Number(
306
+ label="number of conditioning codebooks. probably 0",
307
+ value=0,
308
+ precision=0,
309
+ )
310
+
311
  mask_periodic_amt = gr.Slider(
312
  label="periodic hint (0.0 means no hint, 2 - lots of hints, 8 - a couple of hints, 16 - occasional hint, 32 - very occasional hint, etc)",
313
  minimum=0,
 
315
  step=1,
316
  value=9,
317
  )
318
+ mask_periodic_width = gr.Slider(
319
+ label="periodic hint width (steps, 1 step ~= 10milliseconds",
320
+ minimum=1,
321
+ maximum=100,
322
+ step=1,
323
+ value=1,
324
+ )
325
+ mask_periodic_dropout = gr.Slider(
326
+ label="periodic hint dropout (0.0 means no dropout, 1.0 means all dropout)",
327
+ minimum=0.0,
328
+ maximum=1.0,
329
+ value=0.0,
330
+ )
331
+ mask_periodic_width_dropout = gr.Slider(
332
+ label="periodic hint width dropout (0.0 means no dropout, 1.0 means all dropout)",
333
+ minimum=0.0,
334
+ maximum=1.0,
335
+ value=0.0,
336
+ )
337
 
338
  rand_mask_intensity = gr.Slider(
339
  label="random mask intensity. (If this is less than 1, scatters tiny hints throughout the audio, should be between 0.9 and 1.0)",
340
+ minimum=0.8,
341
  maximum=1.0,
342
  value=1.0
343
  )
 
382
 
383
  num_steps = gr.Slider(
384
  label="number of steps (should normally be between 12 and 36)",
385
+ minimum=1,
386
  maximum=128,
387
  step=1,
388
  value=36
 
418
  maximum=3.0,
419
  value=0.07
420
  )
421
+ beat_unmask_drop = gr.Slider(
422
+ label="dropout (within beat)",
423
+ minimum=0.0,
424
+ maximum=1.0,
425
+ value=0.0
426
+ )
427
+
428
  with gr.Accordion("downbeat settings", open=False):
429
  mask_dwn_chk = gr.Checkbox(
430
  label="hint downbeats",
 
473
  mask_periodic_amt, beat_unmask_dur,
474
  mask_dwn_chk, dwn_factor,
475
  mask_up_chk, up_factor,
476
+ num_vamps, mode, use_beats, num_steps, snap_to_beats,
477
+ beat_unmask_drop, mask_periodic_width,
478
+ mask_periodic_dropout, mask_periodic_width_dropout,
479
+ n_conditioning_codebooks
480
  ],
481
  outputs=[output_audio, audio_mask]
482
  )
 
491
  mask_up_chk, up_factor,
492
  num_vamps, mode,
493
  output_audio,
494
+ notes_text, use_beats, num_steps, snap_to_beats,
495
+ beat_unmask_drop, mask_periodic_width,
496
+ mask_periodic_dropout, mask_periodic_width_dropout,
497
+ n_conditioning_codebooks
498
  ],
499
  outputs=[thank_you, download_file]
500
  )
scripts/utils/vamp_folder.py CHANGED
@@ -220,7 +220,7 @@ EXP_REGISTRY["mask-ratio"] = {
220
 
221
  EXP_REGISTRY["sampling-steps"] = {
222
  "codec": reconstructed,
223
- **{f"steps_{n}": num_sampling_steps(n) for n in [1, 4, 12, 24, 36, 64, 72, 128]},
224
  }
225
 
226
  EXP_REGISTRY["baseline"] = {
 
220
 
221
  EXP_REGISTRY["sampling-steps"] = {
222
  "codec": reconstructed,
223
+ **{f"steps_{n}": num_sampling_steps(n) for n in [1, 4, 12, 24, 36, 64, 72]},
224
  }
225
 
226
  EXP_REGISTRY["baseline"] = {
vampnet/interface.py CHANGED
@@ -134,7 +134,7 @@ class Interface:
134
  mask_upbeats: bool = True,
135
  downbeat_downsample_factor: int = None,
136
  beat_downsample_factor: int = None,
137
- dropout: float = 0.3,
138
  invert: bool = True,
139
  ):
140
  """make a beat synced mask. that is, make a mask that
@@ -182,7 +182,8 @@ class Interface:
182
  _slice = int(beat_idx - mask_b4), int(beat_idx + mask_after)
183
  num_steps = mask[_slice[0]:_slice[1]].shape[0]
184
  _m = torch.ones(num_steps, device=self.device)
185
- _m = torch.nn.functional.dropout(_m, p=dropout)
 
186
 
187
  mask[_slice[0]:_slice[1]] = _m
188
 
@@ -191,7 +192,8 @@ class Interface:
191
  _slice = int(downbeat_idx - mask_b4), int(downbeat_idx + mask_after)
192
  num_steps = mask[_slice[0]:_slice[1]].shape[0]
193
  _m = torch.ones(num_steps, device=self.device)
194
- _m = torch.nn.functional.dropout(_m, p=dropout)
 
195
 
196
  mask[_slice[0]:_slice[1]] = _m
197
 
@@ -342,6 +344,9 @@ class Interface:
342
  suffix_dur_s: float = 0.0,
343
  num_vamps: int = 1,
344
  downsample_factor: int = None,
 
 
 
345
  intensity: float = 1.0,
346
  debug=False,
347
  swap_prefix_suffix=False,
@@ -383,6 +388,9 @@ class Interface:
383
  n_prefix=n_prefix,
384
  n_suffix=n_suffix,
385
  downsample_factor=downsample_factor,
 
 
 
386
  mask=cz_mask,
387
  ext_mask=ext_mask,
388
  n_conditioning_codebooks=n_conditioning_codebooks
@@ -481,8 +489,11 @@ class Interface:
481
  suffix_codes = torch.cat(c_vamp['suffix'], dim=-1)
482
  c_vamp = torch.cat([prefix_codes, suffix_codes], dim=-1)
483
 
 
 
484
  if return_mask:
485
  return c_vamp, cz_masked
 
486
  return c_vamp
487
 
488
  # create a variation of an audio signal
 
134
  mask_upbeats: bool = True,
135
  downbeat_downsample_factor: int = None,
136
  beat_downsample_factor: int = None,
137
+ dropout: float = 0.0,
138
  invert: bool = True,
139
  ):
140
  """make a beat synced mask. that is, make a mask that
 
182
  _slice = int(beat_idx - mask_b4), int(beat_idx + mask_after)
183
  num_steps = mask[_slice[0]:_slice[1]].shape[0]
184
  _m = torch.ones(num_steps, device=self.device)
185
+ _m_mask = torch.bernoulli(_m * (1 - dropout))
186
+ _m = _m * _m_mask.long()
187
 
188
  mask[_slice[0]:_slice[1]] = _m
189
 
 
192
  _slice = int(downbeat_idx - mask_b4), int(downbeat_idx + mask_after)
193
  num_steps = mask[_slice[0]:_slice[1]].shape[0]
194
  _m = torch.ones(num_steps, device=self.device)
195
+ _m_mask = torch.bernoulli(_m * (1 - dropout))
196
+ _m = _m * _m_mask.long()
197
 
198
  mask[_slice[0]:_slice[1]] = _m
199
 
 
344
  suffix_dur_s: float = 0.0,
345
  num_vamps: int = 1,
346
  downsample_factor: int = None,
347
+ periodic_width: int = 1,
348
+ periodic_dropout=0.0,
349
+ periodic_width_dropout=0.0,
350
  intensity: float = 1.0,
351
  debug=False,
352
  swap_prefix_suffix=False,
 
388
  n_prefix=n_prefix,
389
  n_suffix=n_suffix,
390
  downsample_factor=downsample_factor,
391
+ periodic_width=periodic_width,
392
+ periodic_dropout=periodic_dropout,
393
+ periodic_width_dropout=periodic_width_dropout,
394
  mask=cz_mask,
395
  ext_mask=ext_mask,
396
  n_conditioning_codebooks=n_conditioning_codebooks
 
489
  suffix_codes = torch.cat(c_vamp['suffix'], dim=-1)
490
  c_vamp = torch.cat([prefix_codes, suffix_codes], dim=-1)
491
 
492
+ # replace the mask token in cz_masked with random tokens
493
+ # so that we can decode it
494
  if return_mask:
495
  return c_vamp, cz_masked
496
+
497
  return c_vamp
498
 
499
  # create a variation of an audio signal
vampnet/modules/base.py CHANGED
@@ -41,6 +41,9 @@ class VampBase(at.ml.BaseModel):
41
  n_prefix: Optional[torch.Tensor] = None,
42
  n_suffix: Optional[torch.Tensor] = None,
43
  downsample_factor: Optional[int] = None,
 
 
 
44
  n_conditioning_codebooks: Optional[int] = None,
45
  noise_mode: str = None,
46
  ) -> Tuple[torch.Tensor, torch.Tensor]:
@@ -75,7 +78,20 @@ class VampBase(at.ml.BaseModel):
75
  continue
76
  for j in range(probs.shape[-1]):
77
  if j % factor == 0:
78
- probs[i, :, j] = 0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  mask = torch.bernoulli(probs)
81
  mask = mask.round().long()
@@ -175,6 +191,14 @@ class VampBase(at.ml.BaseModel):
175
  codec.sample_rate,
176
  )
177
 
 
 
 
 
 
 
 
 
178
  return signal
179
 
180
  @torch.no_grad()
 
41
  n_prefix: Optional[torch.Tensor] = None,
42
  n_suffix: Optional[torch.Tensor] = None,
43
  downsample_factor: Optional[int] = None,
44
+ periodic_width: int = 1,
45
+ periodic_width_dropout: float = 0.0,
46
+ periodic_dropout: float = 0.0,
47
  n_conditioning_codebooks: Optional[int] = None,
48
  noise_mode: str = None,
49
  ) -> Tuple[torch.Tensor, torch.Tensor]:
 
78
  continue
79
  for j in range(probs.shape[-1]):
80
  if j % factor == 0:
81
+ # if we have periodic dropout
82
+ if periodic_dropout > 0:
83
+ # flip a coin
84
+ if torch.bernoulli(torch.tensor(periodic_dropout)).item() == 1:
85
+ # if we win, skip
86
+ continue
87
+ # figure out how wide the mask should be
88
+ j_start = max(0, j - periodic_width // 2)
89
+ j_end = min(probs.shape[-1] - 1, j + periodic_width // 2) + 1
90
+ # flip a coin for each position in the mask
91
+ j_mask = torch.bernoulli(torch.ones(j_end - j_start) * periodic_width_dropout)
92
+ j_fill = torch.ones_like(j_mask) * (1 - j_mask)
93
+ # fill
94
+ probs[i, :, j_start:j_end] = 1 - j_fill
95
 
96
  mask = torch.bernoulli(probs)
97
  mask = mask.round().long()
 
191
  codec.sample_rate,
192
  )
193
 
194
+ # find where the mask token is and replace it with silence in the audio
195
+ for tstep in range(z.shape[-1]):
196
+ if torch.any(z[:, :, tstep] == self.mask_token):
197
+ print("mask token found at step", tstep)
198
+ sample_idx_0 = tstep * codec.hop_length
199
+ sample_idx_1 = sample_idx_0 + codec.hop_length
200
+ signal.samples[:, :, sample_idx_0:sample_idx_1] = 0.0
201
+
202
  return signal
203
 
204
  @torch.no_grad()