File size: 16,415 Bytes
ac059f4
 
 
f3f4634
 
b01c87d
e3ca5f7
ac059f4
 
 
 
b566033
ac059f4
 
 
e3ca5f7
ac059f4
bc21614
5bd16c2
f3f4634
bc21614
 
 
 
 
 
b566033
bc21614
 
ac059f4
5bd16c2
 
 
 
 
 
 
ac059f4
f3f4634
 
 
 
ac059f4
 
 
 
 
 
 
 
 
b01c87d
f3f4634
 
 
ac059f4
99122c4
5bd16c2
 
ac059f4
 
881d56d
b01c87d
 
 
 
c940f25
 
e3ca5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
fa490b8
e3ca5f7
 
 
 
 
 
 
 
881d56d
 
 
 
2f3fb32
 
 
d51eb6d
2f3fb32
 
 
 
881d56d
e3ca5f7
 
 
2f3fb32
09b9691
c940f25
 
e3ca5f7
 
 
 
 
09b9691
b61e699
 
 
 
09b9691
e3ca5f7
 
 
09b9691
e3ca5f7
fa490b8
 
 
c940f25
fa490b8
e3ca5f7
881d56d
 
 
 
 
 
 
 
 
 
 
 
 
3815be3
e3ca5f7
f3f4634
 
ac059f4
c940f25
 
f3f4634
 
 
 
c940f25
09b9691
e3ca5f7
 
 
 
 
 
 
 
 
 
f3f4634
 
 
 
c940f25
f3f4634
 
 
 
 
 
 
 
ac059f4
f3f4634
e3ca5f7
f3f4634
e32ae3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f4634
 
4c6c719
ac059f4
 
 
 
 
5bd16c2
ac059f4
 
 
 
128981d
ac059f4
f3f4634
 
 
 
128981d
ac059f4
 
 
5bd16c2
 
ac059f4
 
 
 
 
 
 
 
 
 
 
 
f3f4634
 
e32ae3e
 
 
 
 
 
 
 
 
4b2f92a
e32ae3e
 
 
 
4b2f92a
e32ae3e
 
 
 
 
4b2f92a
e32ae3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
881d56d
e32ae3e
881d56d
e32ae3e
 
 
a8b7c75
e32ae3e
 
a8b7c75
4c6c719
 
e32ae3e
 
 
a8b7c75
4c6c719
 
e32ae3e
e3ca5f7
 
e32ae3e
 
e3ca5f7
e32ae3e
 
 
 
 
 
e3ca5f7
 
f3f4634
e32ae3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03f09ee
 
 
 
 
 
 
 
 
 
 
 
f3f4634
09b9691
 
 
e32ae3e
4cc9b99
09b9691
ac059f4
4c6c719
 
b61e699
 
09b9691
2f3fb32
b61e699
 
 
 
 
09b9691
b61e699
 
 
 
 
 
09b9691
b61e699
 
4c6c719
 
 
 
 
f3f4634
 
322cc3a
f3f4634
ac059f4
03f09ee
ac059f4
f3f4634
e3ca5f7
 
 
 
 
 
 
 
f3f4634
b61e699
 
d51eb6d
f3f4634
 
ac059f4
128981d
ac059f4
f3f4634
03f09ee
 
 
 
 
 
 
 
 
 
75a7169
03f09ee
 
881d56d
 
 
e3ca5f7
 
09b9691
e3ca5f7
 
 
 
 
 
881d56d
 
b61e699
 
 
2f3fb32
 
881d56d
 
 
 
 
 
fa490b8
881d56d
 
d51eb6d
881d56d
 
 
 
fa490b8
ac059f4
 
c940f25
 
 
 
 
 
f3f4634
 
c940f25
f3f4634
 
ac059f4
551e904
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
from pathlib import Path
from typing import Tuple
import yaml
import tempfile
import uuid
import shutil
from dataclasses import dataclass, asdict

import numpy as np
import audiotools as at
import argbind
import torch

import gradio as gr
from vampnet.interface import Interface
from vampnet import mask as pmask

# Interface = argbind.bind(Interface)
# AudioLoader = argbind.bind(at.data.datasets.AudioLoader)

interface = Interface(
    coarse_ckpt="./models/vampnet/coarse.pth",
    coarse2fine_ckpt="./models/vampnet/c2f.pth",
    codec_ckpt="./models/vampnet/codec.pth",
    device="cuda" if torch.cuda.is_available() else "cpu",
)

# loader = AudioLoader()
print(f"interface device is {interface.device}")

# dataset = at.data.datasets.AudioDataset(
#     loader,
#     sample_rate=interface.codec.sample_rate,
#     duration=interface.coarse.chunk_size_s,
#     n_examples=5000,
#     without_replacement=True,
# )

OUT_DIR = Path("gradio-outputs")
OUT_DIR.mkdir(exist_ok=True, parents=True)


def load_audio(file):
    print(file)
    filepath = file.name
    sig = at.AudioSignal.salient_excerpt(
        filepath, 
        duration=interface.coarse.chunk_size_s
    )
    sig = interface.preprocess(sig)

    out_dir = OUT_DIR / str(uuid.uuid4())
    out_dir.mkdir(parents=True, exist_ok=True)
    sig.write(out_dir / "input.wav")
    return sig.path_to_file


def load_example_audio():
    return "./assets/example.wav"


def _vamp(data, return_mask=False):
    # remove any old files in the output directory (from previous runs)
    shutil.rmtree(OUT_DIR)
    OUT_DIR.mkdir()

    out_dir = OUT_DIR / str(uuid.uuid4())
    out_dir.mkdir()
    sig = at.AudioSignal(data[input_audio])

    z = interface.encode(sig)

    ncc = data[n_conditioning_codebooks]

    # build the mask
    mask = pmask.linear_random(z, data[rand_mask_intensity])
    mask = pmask.mask_and(
        mask, pmask.inpaint(
            z,
            interface.s2t(data[prefix_s]),
            interface.s2t(data[suffix_s])
        )
    )
    mask = pmask.mask_and(
        mask, pmask.periodic_mask(
            z,
            data[periodic_p],
            data[periodic_w],
            random_roll=True
        )
    )
    if data[onset_mask_width] > 0:
        mask = pmask.mask_or(
            mask, pmask.onset_mask(sig, z, interface, width=data[onset_mask_width])
        )
    if data[beat_mask_width] > 0:
        beat_mask = interface.make_beat_mask(
            sig,
            after_beat_s=(data[beat_mask_width]/1000), 
            mask_upbeats=not data[beat_mask_downbeats],
        )
        mask = pmask.mask_and(mask, beat_mask)

    # these should be the last two mask ops
    mask = pmask.dropout(mask, data[dropout])
    mask = pmask.codebook_unmask(mask, ncc)


    print(f"created mask with: linear random {data[rand_mask_intensity]}, inpaint {data[prefix_s]}:{data[suffix_s]}, periodic {data[periodic_p]}:{data[periodic_w]}, dropout {data[dropout]}, codebook unmask {ncc}, onset mask {data[onset_mask_width]}, num steps {data[num_steps]}, init temp {data[temp]},  use coarse2fine {data[use_coarse2fine]}")
    # save the mask as a txt file
    np.savetxt(out_dir / "mask.txt", mask[:,0,:].long().cpu().numpy())

    zv, mask_z = interface.coarse_vamp(
        z, 
        mask=mask,
        sampling_steps=data[num_steps],
        temperature=data[temp]*10,
        return_mask=True, 
        typical_filtering=data[typical_filtering], 
        typical_mass=data[typical_mass], 
        typical_min_tokens=data[typical_min_tokens], 
        gen_fn=interface.coarse.generate,
    )

    if use_coarse2fine: 
        zv = interface.coarse_to_fine(zv, temperature=data[temp])

    sig = interface.to_signal(zv).cpu()
    print("done")

    

    sig.write(out_dir / "output.wav")

    if return_mask:
        mask = interface.to_signal(mask_z).cpu()
        mask.write(out_dir / "mask.wav")
        return sig.path_to_file, mask.path_to_file
    else:
        return sig.path_to_file

def vamp(data):
    return _vamp(data, return_mask=True)

def api_vamp(data):
    return _vamp(data, return_mask=False)
        
def save_vamp(data):
    out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
    out_dir.mkdir(parents=True, exist_ok=True)

    sig_in = at.AudioSignal(data[input_audio])
    sig_out = at.AudioSignal(data[output_audio])

    sig_in.write(out_dir / "input.wav")
    sig_out.write(out_dir / "output.wav")
    
    _data = {
        "temp": data[temp],
        "prefix_s": data[prefix_s],
        "suffix_s": data[suffix_s],
        "rand_mask_intensity": data[rand_mask_intensity],
        "num_steps": data[num_steps],
        "notes": data[notes_text],
        "periodic_period": data[periodic_p],
        "periodic_width": data[periodic_w],
        "n_conditioning_codebooks": data[n_conditioning_codebooks], 
        "use_coarse2fine": data[use_coarse2fine],
        "stretch_factor": data[stretch_factor],
    }

    # save with yaml
    with open(out_dir / "data.yaml", "w") as f:
        yaml.dump(_data, f)

    import zipfile
    zip_path = out_dir.with_suffix(".zip")
    with zipfile.ZipFile(zip_path, "w") as zf:
        for file in out_dir.iterdir():
            zf.write(file, file.name)

    return f"saved! your save code is {out_dir.stem}", zip_path


with gr.Blocks() as demo:

    with gr.Row():
        with gr.Column():
            gr.Markdown("# VampNet Audio Vamping")
            gr.Markdown("""## Description:
            This is a demo of the VampNet, a generative audio model that transforms the input audio based on the chosen settings. 
            You can control the extent and nature of variation with a set of manual controls and presets. 
            Use this interface to experiment with different mask settings and explore the audio outputs.
            """)

            gr.Markdown("""
            ## Instructions:
            1. You can start by uploading some audio, or by loading the example audio. 
            2. Choose a preset for the vamp operation, or manually adjust the controls to customize the mask settings. 
            3. Click the "generate (vamp)!!!" button to apply the vamp operation. Listen to the output audio.
            4. Optionally, you can add some notes and save the result. 
            5. You can also use the output as the new input and continue experimenting!
            """)
    with gr.Row():
        with gr.Column():


            manual_audio_upload = gr.File(
                label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
                file_types=["audio"]
            )
            load_example_audio_button = gr.Button("or load example audio")

            input_audio = gr.Audio(
                label="input audio",
                interactive=False, 
                type="filepath",
            )

            audio_mask = gr.Audio(
                label="audio mask (listen to this to hear the mask hints)",
                interactive=False, 
                type="filepath",
            )

            # connect widgets
            load_example_audio_button.click(
                fn=load_example_audio,
                inputs=[],
                outputs=[ input_audio]
            )

            manual_audio_upload.change(
                fn=load_audio,
                inputs=[manual_audio_upload],
                outputs=[ input_audio]
            )
                
        # mask settings
        with gr.Column():


            presets = {
                    "unconditional": {
                        "periodic_p": 0,
                        "onset_mask_width": 0,
                        "beat_mask_width": 0,
                        "beat_mask_downbeats": False,
                    }, 
                    "slight periodic variation": {
                        "periodic_p": 5,
                        "onset_mask_width": 5,
                        "beat_mask_width": 0,
                        "beat_mask_downbeats": False,
                    },
                    "moderate periodic variation": {
                        "periodic_p": 13,
                        "onset_mask_width": 5,
                        "beat_mask_width": 0,
                        "beat_mask_downbeats": False,
                    },
                    "strong periodic variation": {
                        "periodic_p": 17,
                        "onset_mask_width": 5,
                        "beat_mask_width": 0,
                        "beat_mask_downbeats": False,
                    },
                    "very strong periodic variation": {
                        "periodic_p": 21,
                        "onset_mask_width": 5,
                        "beat_mask_width": 0,
                        "beat_mask_downbeats": False,
                    },
                    "beat-driven variation": {
                        "periodic_p": 0,
                        "onset_mask_width": 0,
                        "beat_mask_width": 50,
                        "beat_mask_downbeats": False,
                    },
                    "beat-driven variation (downbeats only)": {
                        "periodic_p": 0,
                        "onset_mask_width": 0,
                        "beat_mask_width": 50,
                        "beat_mask_downbeats": True,
                    },
                    "beat-driven variation (downbeats only, strong)": {
                        "periodic_p": 0,
                        "onset_mask_width": 0,
                        "beat_mask_width": 20,
                        "beat_mask_downbeats": True,
                    },
                }

            preset = gr.Dropdown(
                label="preset", 
                choices=list(presets.keys()),
                value="strong periodic variation",
            )
            load_preset_button = gr.Button("load_preset")

            with gr.Accordion("manual controls", open=True):
                periodic_p = gr.Slider(
                    label="periodic prompt  (0 - unconditional, 2 - lots of hints, 8 - a couple of hints, 16 - occasional hint, 32 - very occasional hint, etc)",
                    minimum=0,
                    maximum=128, 
                    step=1,
                    value=13, 
                )


                onset_mask_width = gr.Slider(
                    label="onset mask width (multiplies with the periodic mask, 1 step ~= 10milliseconds) ",
                    minimum=0,
                    maximum=20,
                    step=1,
                    value=5,
                )

                beat_mask_width = gr.Slider(
                    label="beat mask width (in milliseconds)",
                    minimum=0,
                    maximum=200,
                    value=0,
                )
                beat_mask_downbeats = gr.Checkbox(
                    label="beat mask downbeats only?", 
                    value=False
                )


                with gr.Accordion("extras ", open=False):
                    rand_mask_intensity = gr.Slider(
                        label="random mask intensity. (If this is less than 1, scatters prompts throughout the audio, should be between 0.9 and 1.0)",
                        minimum=0.0,
                        maximum=1.0,
                        value=1.0
                    )

                    periodic_w = gr.Slider(
                        label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
                        minimum=1,
                        maximum=20,
                        step=1,
                        value=1,
                    )
                    n_conditioning_codebooks = gr.Number(
                        label="number of conditioning codebooks. probably 0", 
                        value=0,
                        precision=0,
                    )

                    stretch_factor = gr.Slider(
                        label="time stretch factor",
                        minimum=0,
                        maximum=64, 
                        step=1,
                        value=1, 
                    )

            preset_outputs = {
                periodic_p, 
                onset_mask_width, 
                beat_mask_width,
                beat_mask_downbeats,
            }

            def load_preset(_preset):
                return tuple(presets[_preset].values())

            load_preset_button.click(
                fn=load_preset,
                inputs=[preset],
                outputs=preset_outputs
            )


            with gr.Accordion("prefix/suffix prompts", open=False):
                prefix_s = gr.Slider(
                    label="prefix hint length (seconds)",
                    minimum=0.0,
                    maximum=10.0,
                    value=0.0
                )
                suffix_s = gr.Slider(
                    label="suffix hint length (seconds)",
                    minimum=0.0,
                    maximum=10.0,
                    value=0.0
                )

            temp = gr.Slider(
                label="temperature",
                minimum=0.0,
                maximum=10.0,
                value=1.8
            )



            with gr.Accordion("sampling settings", open=False):
                typical_filtering = gr.Checkbox(
                    label="typical filtering ",
                    value=False
                )
                typical_mass = gr.Slider(
                    label="typical mass (should probably stay between 0.1 and 0.5)",
                    minimum=0.01,
                    maximum=0.99,
                    value=0.15
                )
                typical_min_tokens = gr.Slider(
                    label="typical min tokens (should probably stay between 1 and 256)",
                    minimum=1,
                    maximum=256,
                    step=1,
                    value=64
                )

            use_coarse2fine = gr.Checkbox(
                label="use coarse2fine",
                value=True
            )

            num_steps = gr.Slider(
                label="number of steps (should normally be between 12 and 36)",
                minimum=1,
                maximum=128,
                step=1,
                value=36
            )

            dropout = gr.Slider(
                label="mask dropout",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=0.0
            )


        # mask settings
        with gr.Column():
            vamp_button = gr.Button("generate (vamp)!!!")
            output_audio = gr.Audio(
                label="output audio",
                interactive=False,
                type="filepath"
            )

            notes_text = gr.Textbox(
                label="type any notes about the generated audio here", 
                value="",
                interactive=True
            )
            save_button = gr.Button("save vamp")
            download_file = gr.File(
                label="vamp to download will appear here",
                interactive=False
            )
            use_as_input_button = gr.Button("use output as input")
            
            thank_you = gr.Markdown("")


    _inputs = {
            input_audio, 
            num_steps,
            temp,
            prefix_s, suffix_s, 
            rand_mask_intensity, 
            periodic_p, periodic_w,
            n_conditioning_codebooks, 
            dropout,
            use_coarse2fine, 
            stretch_factor, 
            onset_mask_width, 
            typical_filtering,
            typical_mass,
            typical_min_tokens,
            beat_mask_width,
            beat_mask_downbeats
        }
  
    # connect widgets
    vamp_button.click(
        fn=vamp,
        inputs=_inputs,
        outputs=[output_audio, audio_mask], 
    )

    api_vamp_button = gr.Button("api vamp", visible=False)
    api_vamp_button.click(
        fn=api_vamp,
        inputs=_inputs, 
        outputs=[output_audio], 
        api_name="vamp"
    )

    use_as_input_button.click(
        fn=lambda x: x,
        inputs=[output_audio],
        outputs=[input_audio]
    )

    save_button.click(
        fn=save_vamp,
        inputs=_inputs | {notes_text, output_audio},
        outputs=[thank_you, download_file]
    )

demo.queue().launch()