datasciencedojo's picture
submit button hover color updated
06b30e3
import cv2
from cvzone.HandTrackingModule import HandDetector
from cvzone.ClassificationModule import Classifier
import numpy as np
import math
import gradio as gr
detector = HandDetector(maxHands=1)
classifier = Classifier("ModelFull/keras_model.h5", "ModelFull/labels.txt")
offset = 20
imgSize = 300
folder = "Data/C"
counter = 0
labels = ["A", "B","C","D","E","F","G","H","I","J","K","L","M","N", "O","P","Q","R","S","T","U","V","W","X","Y","Z"]
def sign(img):
#img = cv2.imread("sign.jpg")
imgOutput = cv2.flip(img.copy(),1)
hands, img = detector.findHands(cv2.flip(img[:,:,::-1],1))
if hands:
print('hand detected')
hand = hands[0]
x, y, w, h = hand['bbox']
imlist = hand['lmList']
print(imlist)
if ((imlist[10][0] < imlist[4][0] < imlist[6][0]) or (imlist[6][0] < imlist[4][0] < imlist[10][0])):
if ((imlist[4][1] < imlist[8][1]) and (imlist[4][1] < imlist[12][1]) ):
print('In T')
cv2.rectangle(imgOutput, (x-offset, y-offset),(x + w+offset, y + h+offset), (255, 0, 255), 4)
imgOutput = cv2.flip(imgOutput,1)
cv2.rectangle(imgOutput, (0,30),(80,80), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, 'T', (20, 75), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
return imgOutput
else:
print('In K')
cv2.rectangle(imgOutput, (x-offset, y-offset),(x + w+offset, y + h+offset), (255, 0, 255), 4)
imgOutput = cv2.flip(imgOutput,1)
cv2.rectangle(imgOutput, (0,30),(80,80), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, 'K', (20, 75), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
return imgOutput
'''if imlist[4][0]>imlist[8][0] and imlist[4][0]>imlist[12][0] and imlist[4][0]>imlist[16][0] and imlist[4][0]>imlist[20][0]:
print('In M')
cv2.rectangle(imgOutput, (x-offset, y-offset),(x + w+offset, y + h+offset), (255, 0, 255), 4)
imgOutput = cv2.flip(imgOutput,1)
cv2.rectangle(imgOutput, (0,30),(80,80), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, 'M', (20, 75), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
return imgOutput'''
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
imgCropShape = imgCrop.shape
aspectRatio = h / w
if aspectRatio > 1:
k = imgSize / h
wCal = math.ceil(k * w)
imgResize = cv2.resize(imgCrop, (wCal, imgSize))
imgResizeShape = imgResize.shape
wGap = math.ceil((imgSize - wCal) / 2)
imgWhite[:, wGap:wCal + wGap] = imgResize
prediction, index = classifier.getPrediction(imgWhite, draw=False)
print(prediction, index)
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
imgResizeShape = imgResize.shape
hGap = math.ceil((imgSize - hCal) / 2)
imgWhite[hGap:hCal + hGap, :] = imgResize
prediction, index = classifier.getPrediction(imgWhite, draw=False)
cv2.imwrite("check.jpg",imgWhite)
cv2.rectangle(imgOutput, (x-offset, y-offset),
(x + w+offset, y + h+offset), (255, 0, 255), 4)
imgOutput = cv2.flip(imgOutput,1)
#cv2.rectangle(imgOutput, (x - offset, y - offset-50),
# (x - offset+90, y - offset-50+50), (255, 0, 255), cv2.FILLED)
#cv2.putText(imgOutput, labels[index], (x, y -26), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
cv2.rectangle(imgOutput, (0,30),
(80,80), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, labels[index], (20, 75), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
#cv2.imshow("ImageCrop", imgCrop)
#cv2.imshow("ImageWhite", imgWhite)
#cv2.imshow("Image", imgOutput)
return imgOutput
def set_example_image(example: list) -> dict:
return gr.inputs.Image.update(value=example[0])
css = """
.gr-button-lg {
z-index: 14;
width: 113px;
height: 30px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(17, 20, 45) !important;
border: none !important;
text-align: center !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 6px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: none !important;
}
.gr-button-lg:hover{
z-index: 14;
width: 113px;
height: 30px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(66, 133, 244) !important;
border: none !important;
text-align: center !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 6px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
footer {display:none !important}
.output-markdown{display:none !important}
#out_image {height: 22rem !important;}
"""
with gr.Blocks(title="American Sign Language Detection | Data Science Dojo", css=css) as demo:
with gr.Tabs():
with gr.TabItem('Upload'):
with gr.Row():
with gr.Column():
img_input = gr.Image(shape=(640,480))
image_button = gr.Button("Submit")
with gr.Column():
output = gr.Image(shape=(640,480), elem_id="out_image")
with gr.Row():
example_images = gr.Dataset(components=[img_input],samples=[["ex2.jpg"]])
with gr.TabItem('Webcam'):
with gr.Row():
with gr.Column():
img_input2 = gr.Webcam()
image_button2 = gr.Button("Submit")
with gr.Column():
output2 = gr.outputs.Image()
image_button2.click(fn=sign,
inputs = img_input2,
outputs = output2)
image_button.click(fn=sign,
inputs = img_input,
outputs = output)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
demo.launch(debug=True)