Spaces:
Runtime error
Runtime error
File size: 6,464 Bytes
fc62531 e8e5b05 82eb3c0 fc62531 2dd4b1a fc62531 6308c7b 69099d3 6308c7b 69099d3 fc62531 6308c7b fc62531 2dd4b1a fc62531 2dd4b1a fc62531 6308c7b 6fcd558 06b30e3 6fcd558 f91b0b1 fc62531 6308c7b 2480254 6308c7b fc62531 6308c7b fc62531 2dd4b1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import cv2
from cvzone.HandTrackingModule import HandDetector
from cvzone.ClassificationModule import Classifier
import numpy as np
import math
import gradio as gr
detector = HandDetector(maxHands=1)
classifier = Classifier("ModelFull/keras_model.h5", "ModelFull/labels.txt")
offset = 20
imgSize = 300
folder = "Data/C"
counter = 0
labels = ["A", "B","C","D","E","F","G","H","I","J","K","L","M","N", "O","P","Q","R","S","T","U","V","W","X","Y","Z"]
def sign(img):
#img = cv2.imread("sign.jpg")
imgOutput = cv2.flip(img.copy(),1)
hands, img = detector.findHands(cv2.flip(img[:,:,::-1],1))
if hands:
print('hand detected')
hand = hands[0]
x, y, w, h = hand['bbox']
imlist = hand['lmList']
print(imlist)
if ((imlist[10][0] < imlist[4][0] < imlist[6][0]) or (imlist[6][0] < imlist[4][0] < imlist[10][0])):
if ((imlist[4][1] < imlist[8][1]) and (imlist[4][1] < imlist[12][1]) ):
print('In T')
cv2.rectangle(imgOutput, (x-offset, y-offset),(x + w+offset, y + h+offset), (255, 0, 255), 4)
imgOutput = cv2.flip(imgOutput,1)
cv2.rectangle(imgOutput, (0,30),(80,80), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, 'T', (20, 75), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
return imgOutput
else:
print('In K')
cv2.rectangle(imgOutput, (x-offset, y-offset),(x + w+offset, y + h+offset), (255, 0, 255), 4)
imgOutput = cv2.flip(imgOutput,1)
cv2.rectangle(imgOutput, (0,30),(80,80), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, 'K', (20, 75), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
return imgOutput
'''if imlist[4][0]>imlist[8][0] and imlist[4][0]>imlist[12][0] and imlist[4][0]>imlist[16][0] and imlist[4][0]>imlist[20][0]:
print('In M')
cv2.rectangle(imgOutput, (x-offset, y-offset),(x + w+offset, y + h+offset), (255, 0, 255), 4)
imgOutput = cv2.flip(imgOutput,1)
cv2.rectangle(imgOutput, (0,30),(80,80), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, 'M', (20, 75), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
return imgOutput'''
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
imgCropShape = imgCrop.shape
aspectRatio = h / w
if aspectRatio > 1:
k = imgSize / h
wCal = math.ceil(k * w)
imgResize = cv2.resize(imgCrop, (wCal, imgSize))
imgResizeShape = imgResize.shape
wGap = math.ceil((imgSize - wCal) / 2)
imgWhite[:, wGap:wCal + wGap] = imgResize
prediction, index = classifier.getPrediction(imgWhite, draw=False)
print(prediction, index)
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
imgResizeShape = imgResize.shape
hGap = math.ceil((imgSize - hCal) / 2)
imgWhite[hGap:hCal + hGap, :] = imgResize
prediction, index = classifier.getPrediction(imgWhite, draw=False)
cv2.imwrite("check.jpg",imgWhite)
cv2.rectangle(imgOutput, (x-offset, y-offset),
(x + w+offset, y + h+offset), (255, 0, 255), 4)
imgOutput = cv2.flip(imgOutput,1)
#cv2.rectangle(imgOutput, (x - offset, y - offset-50),
# (x - offset+90, y - offset-50+50), (255, 0, 255), cv2.FILLED)
#cv2.putText(imgOutput, labels[index], (x, y -26), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
cv2.rectangle(imgOutput, (0,30),
(80,80), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, labels[index], (20, 75), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
#cv2.imshow("ImageCrop", imgCrop)
#cv2.imshow("ImageWhite", imgWhite)
#cv2.imshow("Image", imgOutput)
return imgOutput
def set_example_image(example: list) -> dict:
return gr.inputs.Image.update(value=example[0])
css = """
.gr-button-lg {
z-index: 14;
width: 113px;
height: 30px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(17, 20, 45) !important;
border: none !important;
text-align: center !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 6px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: none !important;
}
.gr-button-lg:hover{
z-index: 14;
width: 113px;
height: 30px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(66, 133, 244) !important;
border: none !important;
text-align: center !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 6px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
footer {display:none !important}
.output-markdown{display:none !important}
#out_image {height: 22rem !important;}
"""
with gr.Blocks(title="American Sign Language Detection | Data Science Dojo", css=css) as demo:
with gr.Tabs():
with gr.TabItem('Upload'):
with gr.Row():
with gr.Column():
img_input = gr.Image(shape=(640,480))
image_button = gr.Button("Submit")
with gr.Column():
output = gr.Image(shape=(640,480), elem_id="out_image")
with gr.Row():
example_images = gr.Dataset(components=[img_input],samples=[["ex2.jpg"]])
with gr.TabItem('Webcam'):
with gr.Row():
with gr.Column():
img_input2 = gr.Webcam()
image_button2 = gr.Button("Submit")
with gr.Column():
output2 = gr.outputs.Image()
image_button2.click(fn=sign,
inputs = img_input2,
outputs = output2)
image_button.click(fn=sign,
inputs = img_input,
outputs = output)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
demo.launch(debug=True) |