File size: 33,099 Bytes
8646273
 
 
 
15dbd99
8646273
 
66ff4f5
871cd60
 
636d133
5734e39
 
8646273
 
 
636d133
8646273
 
 
 
 
 
2ae4679
15dbd99
eeca930
2ae4679
4ea56e8
 
a237ee5
f5471b4
 
 
636d133
f5471b4
 
 
 
636d133
f5471b4
 
 
 
 
 
 
 
 
636d133
f5471b4
 
639fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8646273
636d133
f5471b4
a237ee5
 
639fbda
 
 
 
f5471b4
 
636d133
a237ee5
639fbda
bfda450
8646273
a237ee5
8646273
50edc36
8646273
 
 
 
 
bfda450
8646273
a237ee5
639fbda
5734e39
 
 
 
639fbda
8646273
 
636d133
8646273
 
636d133
 
8646273
636d133
8646273
636d133
 
 
 
 
 
 
a237ee5
 
636d133
a237ee5
636d133
a237ee5
636d133
 
a237ee5
636d133
 
 
a237ee5
636d133
a237ee5
636d133
 
a237ee5
 
636d133
 
a237ee5
636d133
 
 
 
8646273
 
636d133
8646273
 
 
 
 
 
 
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636d133
5734e39
 
4ea56e8
 
 
 
 
 
 
636d133
68d65f8
636d133
d4306c7
8646273
d4306c7
8646273
5734e39
8646273
 
 
 
871cd60
d4306c7
871cd60
5734e39
636d133
 
 
 
 
 
 
 
 
5734e39
636d133
 
5734e39
 
 
636d133
d4306c7
4ea56e8
 
871cd60
636d133
5734e39
871cd60
5734e39
636d133
d4306c7
636d133
 
 
d4306c7
5734e39
d4306c7
5734e39
 
 
636d133
6767598
636d133
 
 
 
 
4ea56e8
636d133
 
 
a237ee5
636d133
 
5734e39
636d133
5734e39
 
636d133
eeca930
5734e39
 
 
 
 
 
636d133
d4306c7
 
 
 
 
 
68d65f8
d4306c7
636d133
5734e39
 
 
636d133
 
5734e39
 
636d133
5734e39
639fbda
 
636d133
5734e39
 
639fbda
6767598
636d133
 
6767598
636d133
5734e39
636d133
5734e39
 
636d133
 
 
5734e39
 
 
 
 
 
68d65f8
d4306c7
5734e39
 
636d133
d4306c7
 
 
 
 
 
 
636d133
 
6767598
636d133
6767598
 
4ea56e8
5734e39
eeca930
636d133
5734e39
636d133
5734e39
 
636d133
 
 
 
5734e39
 
 
 
 
636d133
5734e39
636d133
 
 
5734e39
 
636d133
 
 
 
 
 
 
15dbd99
5734e39
6767598
 
636d133
 
15dbd99
 
4ea56e8
636d133
 
15dbd99
6767598
15dbd99
636d133
15dbd99
636d133
 
 
 
 
 
5734e39
6767598
 
 
636d133
6767598
636d133
 
5734e39
6767598
 
 
636d133
 
 
 
 
 
 
 
 
 
 
 
5734e39
636d133
 
 
eeca930
4ea56e8
 
636d133
 
 
 
 
 
5734e39
636d133
 
 
eeca930
636d133
5734e39
636d133
 
 
5734e39
eeca930
636d133
 
 
 
d4306c7
 
66ff4f5
636d133
 
 
66ff4f5
 
636d133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a237ee5
50edc36
8646273
 
636d133
50edc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636d133
5734e39
636d133
5734e39
 
636d133
 
 
 
5734e39
636d133
5734e39
a237ee5
636d133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5471b4
 
636d133
 
 
 
 
 
 
 
639fbda
 
 
8646273
 
636d133
 
 
 
639fbda
636d133
8646273
eeca930
636d133
eeca930
 
6767598
eeca930
 
 
636d133
 
eeca930
 
636d133
 
eeca930
636d133
 
eeca930
 
 
636d133
 
 
 
eeca930
636d133
 
eeca930
5734e39
eeca930
636d133
 
 
 
 
 
 
 
eeca930
 
636d133
 
68d65f8
636d133
 
 
 
 
 
 
 
 
 
eeca930
636d133
 
 
 
 
 
eeca930
636d133
 
 
 
 
 
 
 
 
 
6767598
636d133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8646273
636d133
66ff4f5
 
636d133
 
 
66ff4f5
68d65f8
636d133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.

import gradio as gr
import numpy as np
import pandas as pd
from phasehunter.data_preparation import prepare_waveform
import torch
import io

from scipy.stats import gaussian_kde
from scipy.signal import resample
from bmi_topography import Topography
import earthpy.spatial as es

import obspy
from obspy.clients.fdsn import Client
from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException
from obspy.geodetics.base import locations2degrees
from obspy.taup import TauPyModel
from obspy.taup.helper_classes import SlownessModelError

from obspy.clients.fdsn.header import URL_MAPPINGS

import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from mpl_toolkits.axes_grid1 import ImageGrid

from glob import glob


def resample_waveform(waveform, original_freq, target_freq):
    """
    Resample a waveform from original frequency to target frequency using SciPy's resample function.
    
    Args:
    waveform (numpy.ndarray): The input waveform as a 1D array.
    original_freq (float): The original sampling frequency of the waveform.
    target_freq (float): The target sampling frequency of the waveform.
    
    Returns:
    resampled_waveform (numpy.ndarray): The resampled waveform as a 1D array.
    """
    # Calculate the resampling ratio
    resampling_ratio = target_freq / original_freq
    # Calculate the new length of the resampled waveform
    resampled_length = int(waveform.shape[-1] * resampling_ratio)
    # Resample the waveform using SciPy's resample function
    resampled_waveform = resample(waveform, resampled_length, axis=-1)
    
    return resampled_waveform

def sort_channels_to_ZNE(waveform, channels):
    # Input:
    # waveform: a 2D numpy array with shape (3, n), where n is the number of samples
    # channels: a list or tuple of 3 strings representing the channel order, e.g. ('N', 'Z', 'E')
    channels = list(channels)

    if len(channels) != 3 or set(channels) != {'Z', 'N', 'E'}:
        raise ValueError("Invalid channel input. It should be a permutation of 'Z', 'N', and 'E'.")

    # Find the indices of the Z, N, and E channels
    z_index = channels.index('Z')
    n_index = channels.index('N')
    e_index = channels.index('E')
    
    print(z_index, n_index, e_index)
    # Sort the channels to ZNE
    sorted_waveform = waveform[[z_index, n_index, e_index], :]
    
    return sorted_waveform

def make_prediction(waveform, sampling_rate, order):
    waveform = np.load(waveform)
    print('Loaded', waveform.shape)

    if len(waveform.shape) == 1:
        waveform = waveform.reshape(1, waveform.shape[0])

    elif waveform.shape[0] == 3:
        waveform = sort_channels_to_ZNE(waveform, order)

    if sampling_rate != 100:
        waveform = resample_waveform(waveform, sampling_rate, 100)
        print('Resampled', waveform.shape)


    orig_waveform = waveform[:, :6000].copy()
    processed_input = prepare_waveform(waveform)

    # Make prediction
    with torch.inference_mode():
        output = model(processed_input)

    p_phase = output[:, 0]
    s_phase = output[:, 1]

    return processed_input, p_phase, s_phase, orig_waveform


def mark_phases(waveform, uploaded_file, p_thres, s_thres, sampling_rate, order):

    if uploaded_file is not None:
        waveform = uploaded_file.name

    processed_input, p_phase, s_phase, orig_waveform = make_prediction(waveform, sampling_rate, order)

    # Create a plot of the waveform with the phases marked
    if sum(processed_input[0][2] == 0): #if input is 1C
        fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)

        ax[0].plot(orig_waveform[0], color='black', lw=1)
        ax[0].set_ylabel('Norm. Ampl.')

    else: #if input is 3C
        fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
        ax[0].plot(orig_waveform[0], color='black', lw=1)
        ax[1].plot(orig_waveform[1], color='black', lw=1)
        ax[2].plot(orig_waveform[2], color='black', lw=1)

        ax[0].set_ylabel('Z')
        ax[1].set_ylabel('N')
        ax[2].set_ylabel('E')


    do_we_have_p = (p_phase.std().item()*60 < p_thres)
    if do_we_have_p:
        p_phase_plot = p_phase*processed_input.shape[-1]
        p_kde = gaussian_kde(p_phase_plot)
        p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )
        ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')
    else:
        ax[-1].text(0.5, 0.75, 'No P phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)

    do_we_have_s = (s_phase.std().item()*60 < s_thres)
    if do_we_have_s:
        s_phase_plot = s_phase*processed_input.shape[-1]
        s_kde = gaussian_kde(s_phase_plot)
        s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )
        ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')

        for a in ax:
            a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P', alpha=do_we_have_p)
            a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S', alpha=do_we_have_s)
    else:
        ax[-1].text(0.5, 0.25, 'No S phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)

    ax[-1].set_xlabel('Time, samples')
    ax[-1].set_ylabel('Uncert., samples')
    ax[-1].legend()

    plt.subplots_adjust(hspace=0., wspace=0.)

    # Convert the plot to an image and return it
    fig.canvas.draw()
    image = np.array(fig.canvas.renderer.buffer_rgba())
    plt.close(fig)
    return image

def bin_distances(distances, bin_size=10):
    # Bin the distances into groups of `bin_size` kilometers
    binned_distances = {}
    for i, distance in enumerate(distances):
        bin_index = distance // bin_size
        if bin_index not in binned_distances:
            binned_distances[bin_index] = (distance, i)
        elif i < binned_distances[bin_index][1]:
            binned_distances[bin_index] = (distance, i)

    # Select the first distance in each bin and its index
    first_distances = []
    for bin_index in binned_distances:
        first_distance, first_distance_index = binned_distances[bin_index]
        first_distances.append(first_distance_index)
    
    return first_distances

def variance_coefficient(residuals):
    # calculate the variance of the residuals
    var = residuals.var()
    # scale the variance to a coefficient between 0 and 1
    coeff = 1 - (var / (residuals.max() - residuals.min()))
    return coeff

def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms, conf_thres_P, conf_thres_S):
    distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []
    
    taup_model = TauPyModel(model=velocity_model)
    client = Client(client_name)

    window = radius_km / 111.2
    max_waveforms = int(max_waveforms)

    assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds"
    assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds"

    starttime = obspy.UTCDateTime(timestamp)
    endtime = starttime + 120

    try:
        print('Starting to download inventory')
        inv = client.get_stations(network="*", station="*", location="*", channel="*H*", 
                            starttime=starttime, endtime=endtime, 
                            minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),
                            minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window), 
                            level='station')
        print('Finished downloading inventory')
        
    except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
        fig, ax = plt.subplots()
        ax.text(0.5,0.5,'Something is wrong with the data provider, try another')
        fig.canvas.draw();
        image = np.array(fig.canvas.renderer.buffer_rgba())
        plt.close(fig)
        return image
    
    waveforms = []
    cached_waveforms = glob("data/cached/*.mseed")

    for network in inv:
        if network.code == 'SY':
            continue
        for station in network:
            print(f"Processing {network.code}.{station.code}...")
            distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)

            arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km, 
                                                    distance_in_degree=distance, 
                                                    phase_list=["P", "S"])

            if len(arrivals) > 0:

                starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15
                endtime = starttime + 60
                try:
                    filename=f'{network.code}_{station.code}_{starttime}'
                    if f"data/cached/{filename}.mseed" not in cached_waveforms:
                        print(f'Downloading waveform for {filename}')
                        waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*", 
                                                    starttime=starttime, endtime=endtime)
                        waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED")
                        print('Finished downloading and caching waveform')
                    else:
                        print('Reading cached waveform')
                        waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed")
                        

                except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
                    print(f'Skipping {network.code}_{station.code}_{starttime}')
                    continue
            
                waveform = waveform.select(channel="H[BH][ZNE]")
                waveform = waveform.merge(fill_value=0)
                waveform = waveform[:3].sort(keys=['channel'], reverse=True)

                len_check = [len(x.data) for x in waveform]
                if len(set(len_check)) > 1:
                    continue

                if len(waveform) == 3:
                    try:
                        waveform = prepare_waveform(np.stack([x.data for x in waveform]))

                        distances.append(distance)
                        t0s.append(starttime)
                        st_lats.append(station.latitude)
                        st_lons.append(station.longitude)
                        waveforms.append(waveform)
                        names.append(f"{network.code}.{station.code}")

                        print(f"Added {network.code}.{station.code} to the list of waveforms")

                    except:
                        continue
                
    
    # If there are no waveforms, return an empty plot
    if len(waveforms) == 0:
        print('No waveforms found')
        fig, ax = plt.subplots()
        # prints "No waveforms found" on the plot aligned at center and vertically
        ax.text(0.5,0.5,'No waveforms found', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
        fig.canvas.draw();
        image = np.array(fig.canvas.renderer.buffer_rgba())
        plt.close(fig)

        output_picks = pd.DataFrame()
        output_picks.to_csv('data/picks.csv', index=False)
        output_csv = 'data/picks.csv'
        return image, output_picks, output_csv
    

    first_distances = bin_distances(distances, bin_size=10/111.2)

    # Edge case when there are way too many waveforms to process
    selection_indexes = np.random.choice(first_distances, 
                                         np.min([len(first_distances), max_waveforms]),
                                         replace=False)

    waveforms = np.array(waveforms)[selection_indexes]
    distances = np.array(distances)[selection_indexes]
    t0s = np.array(t0s)[selection_indexes]
    st_lats = np.array(st_lats)[selection_indexes]
    st_lons = np.array(st_lons)[selection_indexes]
    names = np.array(names)[selection_indexes]

    waveforms = [torch.tensor(waveform) for waveform in waveforms]

    print('Starting to run predictions')
    with torch.no_grad():
        waveforms_torch = torch.vstack(waveforms)
        output = model(waveforms_torch)

    p_phases = output[:, 0]
    s_phases = output[:, 1]

    p_phases = p_phases.reshape(len(waveforms),-1)
    s_phases = s_phases.reshape(len(waveforms),-1)

    # Max confidence - min variance    
    p_max_confidence = p_phases.std(axis=-1).min()
    s_max_confidence = s_phases.std(axis=-1).min()

    print(f"Starting plotting {len(waveforms)} waveforms")
    fig, ax = plt.subplots(ncols=3, figsize=(10, 3))
    
    # Plot topography
    print('Fetching topography')
    params = Topography.DEFAULT.copy()
    extra_window = 0.5
    params["south"] = np.min([st_lats.min(), eq_lat])-extra_window
    params["north"] = np.max([st_lats.max(), eq_lat])+extra_window
    params["west"] = np.min([st_lons.min(), eq_lon])-extra_window
    params["east"] = np.max([st_lons.max(), eq_lon])+extra_window

    topo_map = Topography(**params)
    topo_map.fetch()
    topo_map.load()

    print('Plotting topo')
    hillshade = es.hillshade(topo_map.da[0], altitude=10)
    
    topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)
    topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)
    ax[1].imshow(hillshade, cmap="Greys", alpha=0.5)

    output_picks = pd.DataFrame({'station_name' : [], 
                                'st_lat' : [], 'st_lon' : [],
                                 'starttime' : [], 
                                 'p_phase, s' : [], 'p_uncertainty, s' : [], 
                                 's_phase, s' : [], 's_uncertainty, s' : [],
                                 'velocity_p, km/s' : [], 'velocity_s, km/s' : []})
                        
    for i in range(len(waveforms)):
        print(f"Plotting waveform {i+1}/{len(waveforms)}")
        current_P = p_phases[i]
        current_S = s_phases[i]
        
        x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]
        x = mdates.date2num(x)

        # Normalize confidence for the plot
        p_conf = 1/(current_P.std()/p_max_confidence).item()
        s_conf = 1/(current_S.std()/s_max_confidence).item()

        delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp

        ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)

        if (current_P.std().item()*60 < conf_thres_P) or (current_S.std().item()*60 < conf_thres_S):
            ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')
            ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')
        
            velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()
            velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()

            # Generate an array from st_lat to eq_lat and from st_lon to eq_lon
            x = np.linspace(st_lons[i], eq_lon, 50)
            y = np.linspace(st_lats[i], eq_lat, 50)
            
            # Plot the array
            ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.1, vmin=0, vmax=8)
            ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.1, vmin=0, vmax=8)

        else:
            velocity_p = np.nan
            velocity_s = np.nan
        
        ax[0].set_ylabel('Z')
        print(f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}")

        output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]], 
                                                        'st_lat' : [st_lats[i]], 'st_lon' : [st_lons[i]],
                                                        'starttime' : [str(t0s[i])], 
                                                        'p_phase, s' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty, s' : [current_P.std().item()*60], 
                                                        's_phase, s' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty, s' : [current_S.std().item()*60],
                                                        'velocity_p, km/s' : [velocity_p], 'velocity_s, km/s' : [velocity_s]}))
        
        
    # Add legend
    ax[0].scatter(None, None, color='r', marker='|', label='P')
    ax[0].scatter(None, None, color='b', marker='|', label='S')
    ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
    ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))
    ax[0].legend()

    print('Plotting stations')
    for i in range(1,3):
        ax[i].scatter(st_lons, st_lats, color='b', label='Stations')
        ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')
        ax[i].set_aspect('equal')
        ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50)

    fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,
                    wspace=0.02, hspace=0.02)
    
    cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])
    cbar = fig.colorbar(ax[2].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), cax=cb_ax)

    cbar.set_label('Velocity (km/s)')
    ax[1].set_title('P Velocity')
    ax[2].set_title('S Velocity')

    for a in ax:
        a.tick_params(axis='both', which='major', labelsize=8)
        
    plt.subplots_adjust(hspace=0., wspace=0.5)
    fig.canvas.draw();
    image = np.array(fig.canvas.renderer.buffer_rgba())
    plt.close(fig)

    output_csv = f'data/velocity/{eq_lat}_{eq_lon}_{source_depth_km}_{timestamp}_{len(waveforms)}.csv'
    output_picks.to_csv(output_csv, index=False)
    
    return image, output_picks, output_csv

import numpy as np
from matplotlib import colors, cm

# Function to find the closest index for a given value in an array
def find_closest_index(array, value):
    return np.argmin(np.abs(array - value))

def compute_velocity_model(azimuth, elevation):
    filename = list(output_csv.temp_files)[0]
    
    df = pd.read_csv(filename)
    print(df)
    filename = filename.split('/')[-1]
    
    # Current EQ location
    eq_lat = float(filename.split("_")[0])
    eq_lon = float(filename.split("_")[1])
    eq_depth = float(filename.split("_")[2])

    # Define the region of interest (latitude, longitude, and depth ranges)
    lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat]))
    lon_range = (np.min([df.st_lon.min(), eq_lon]),  np.max([df.st_lon.max(), eq_lon]))
    depth_range = (0, 50)

    # Define the number of nodes in each dimension
    n_lat = 10
    n_lon = 10
    n_depth = 10
    num_points = 100

    # Create the grid
    lat_values = np.linspace(lat_range[0], lat_range[1], n_lat)
    lon_values = np.linspace(lon_range[0], lon_range[1], n_lon)
    depth_values = np.linspace(depth_range[0], depth_range[1], n_depth)

    # Initialize the velocity model with constant values
    initial_velocity = 0  # km/s, this can be P-wave or S-wave velocity
    velocity_model = np.full((n_lat, n_lon, n_depth), initial_velocity, dtype=float)

    # Loop through the stations and update the velocity model
    for i in range(len(df)):
        if ~np.isnan(df['velocity_p, km/s'].iloc[i]):
            # Interpolate coordinates along the great circle path between the earthquake and the station
            lon_deg = np.linspace(df.st_lon.iloc[i], eq_lon, num_points)
            lat_deg = np.linspace(df.st_lat.iloc[i], eq_lat, num_points)
            depth_interpolated = np.interp(np.linspace(0, 1, num_points), [0, 1], [eq_depth, 0])

            # Loop through the interpolated coordinates and update the grid cells with the average P-wave velocity
            for lat, lon, depth in zip(lat_deg, lon_deg, depth_interpolated):
                lat_index = find_closest_index(lat_values, lat)
                lon_index = find_closest_index(lon_values, lon)
                depth_index = find_closest_index(depth_values, depth)
                
                if velocity_model[lat_index, lon_index, depth_index] == initial_velocity:
                    velocity_model[lat_index, lon_index, depth_index] = df['velocity_p, km/s'].iloc[i]
                else:
                    velocity_model[lat_index, lon_index, depth_index] = (velocity_model[lat_index, lon_index, depth_index] +
                                                                        df['velocity_p, km/s'].iloc[i]) / 2
                    
    # Create the figure and axis
    fig = plt.figure(figsize=(8, 8))
    ax = fig.add_subplot(111, projection='3d')

    # Set the plot limits
    ax.set_xlim3d(lat_range[0], lat_range[1])
    ax.set_ylim3d(lon_range[0], lon_range[1])
    ax.set_zlim3d(depth_range[1], depth_range[0])

    ax.set_xlabel('Latitude')
    ax.set_ylabel('Longitude')
    ax.set_zlabel('Depth (km)')
    ax.set_title('Velocity Model')
    
    # Create the meshgrid
    x, y, z = np.meshgrid(
        np.linspace(lat_range[0], lat_range[1], velocity_model.shape[0]+1),
        np.linspace(lon_range[0], lon_range[1], velocity_model.shape[1]+1),
        np.linspace(depth_range[0], depth_range[1], velocity_model.shape[2]+1),
        indexing='ij'
    )

    # Create the color array
    norm = plt.Normalize(vmin=velocity_model.min(), vmax=velocity_model.max())
    colors = plt.cm.plasma(norm(velocity_model))

    # Plot the voxels
    ax.voxels(x, y, z, velocity_model > 0, facecolors=colors, alpha=0.5, edgecolor='k')

    # Set the view angle
    ax.view_init(elev=elevation, azim=azimuth)

    m = cm.ScalarMappable(cmap=plt.cm.plasma, norm=norm)
    m.set_array([])
    plt.colorbar(m)

    # Show the plot
    fig.canvas.draw();
    image = np.array(fig.canvas.renderer.buffer_rgba())
    plt.close(fig)

    return image

model = torch.jit.load("model.pt")

with gr.Blocks() as demo:
    gr.HTML("""
<div style="padding: 20px; border-radius: 10px;">
    <h1 style="font-size: 30px; text-align: center; margin-bottom: 20px;">PhaseHunter <span style="animation: arrow-anim 10s linear infinite; display: inline-block; transform: rotate(45deg) translateX(-20px);">🏹</span>

<style>
    @keyframes arrow-anim {
        0% { transform: translateX(-20px); }
        50% { transform: translateX(20px); }
        100% { transform: translateX(-20px); }
    }
</style></h1> 
    
    <p style="font-size: 16px; margin-bottom: 20px;">Detect <span style="background-image: linear-gradient(to right, #ED213A, #93291E); 
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;">P</span> and <span style="background-image: linear-gradient(to right, #00B4DB, #0083B0); 
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;">S</span> seismic phases with <span style="background-image: linear-gradient(to right, #f12711, #f5af19); 
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;">uncertainty</span></p>
    <ul style="font-size: 16px; margin-bottom: 40px;">
        <li>Detect seismic phases by selecting a sample waveform or uploading your own waveform in <code>.npy</code> format.</li>
        <li>Select an earthquake from the global earthquake catalogue and PhaseHunter will analyze seismic stations in the given radius.</li>
        <li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>
    </ul>
</div>
""")
    with gr.Tab("Try on a single station"):
        with gr.Row(): 
            # Define the input and output types for Gradio
            inputs = gr.Dropdown(
                ["data/sample/sample_0.npy", 
                "data/sample/sample_1.npy", 
                "data/sample/sample_2.npy"], 
                label="Sample waveform", 
                info="Select one of the samples",
                value = "data/sample/sample_0.npy"
            )
            with gr.Column(scale=1):
                P_thres_inputs = gr.Slider(minimum=0.01,
                                    maximum=1,
                                    value=0.1,
                                    label="P uncertainty threshold, s",
                                    step=0.01,
                                    info="Acceptable uncertainty for P picks expressed in std() seconds",
                                    interactive=True,
                                    )
                
                S_thres_inputs = gr.Slider(minimum=0.01,
                                    maximum=1,
                                    value=0.2,
                                    label="S uncertainty threshold, s",
                                    step=0.01,
                                    info="Acceptable uncertainty for S picks expressed in std() seconds",
                                    interactive=True,
                                    )
            with gr.Column(scale=1):
                upload = gr.File(label="Or upload your own waveform")
                sampling_rate_inputs = gr.Slider(minimum=10,
                        maximum=1000,
                        value=100,
                        label="Samlping rate, Hz",
                        step=10,
                        info="Sampling rate of the waveform",
                        interactive=True,
                        )
                order_input = gr.Text(value='ZNE', 
                                      label='Channel order', 
                                      info='Order of the channels in the waveform file (e.g. ZNE)')

        button = gr.Button("Predict phases")
        outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)
    
        button.click(mark_phases, inputs=[inputs, upload, 
                                          P_thres_inputs, S_thres_inputs,
                                          sampling_rate_inputs, order_input], 
                                          outputs=outputs)    
    with gr.Tab("Select earthquake from catalogue"):

        gr.HTML("""
        <div style="padding: 20px; border-radius: 10px; font-size: 16px;">
        <p style="font-weight: bold; font-size: 24px; margin-bottom: 20px;">Using PhaseHunter to Analyze Seismic Waveforms</p>
        <p>Select an earthquake from the global earthquake catalogue (e.g. <a href="https://earthquake.usgs.gov/earthquakes/map">USGS</a>) and the app will download the waveform from the FDSN client of your choice. The app will use a velocity model of your choice to select appropriate time windows for each station within a specified radius of the earthquake.</p>
        <p>The app will then analyze the waveforms and mark the detected phases on the waveform. Pick data for each waveform is reported in seconds from the start of the waveform.</p>
        <p>Velocities are derived from distance and travel time determined by PhaseHunter picks (<span style="font-style: italic;">v = distance/predicted_pick_time</span>). The background of the velocity plot is colored by DEM.</p>
        </div>
        """)
        with gr.Row(): 
            with gr.Column(scale=2):
                client_inputs = gr.Dropdown(
                    choices = list(URL_MAPPINGS.keys()), 
                    label="FDSN Client", 
                    info="Select one of the available FDSN clients",
                    value = "IRIS",
                    interactive=True
                )

                velocity_inputs = gr.Dropdown(
                    choices = ['1066a', '1066b', 'ak135', 
                            'ak135f', 'herrin', 'iasp91', 
                            'jb', 'prem', 'pwdk'], 
                    label="1D velocity model", 
                    info="Velocity model for station selection",
                    value = "1066a",
                    interactive=True
                )

            with gr.Column(scale=2):
                timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',
                                    placeholder='YYYY-MM-DD HH:MM:SS',
                                    label="Timestamp",
                                    info="Timestamp of the earthquake",
                                    max_lines=1,
                                    interactive=True)
                
                source_depth_inputs = gr.Number(value=10,
                    label="Source depth (km)",
                    info="Depth of the earthquake",
                    interactive=True)
                
            with gr.Column(scale=2):
                eq_lat_inputs = gr.Number(value=35.766, 
                                label="Latitude", 
                                info="Latitude of the earthquake",
                                interactive=True)
                
                eq_lon_inputs = gr.Number(value=-117.605,
                                    label="Longitude",
                                    info="Longitude of the earthquake",
                                    interactive=True)
                
            with gr.Column(scale=2):
                radius_inputs = gr.Slider(minimum=1, 
                                        maximum=200, 
                                        value=50, 
                                        label="Radius (km)", 
                                        step=10,
                                        info="""Select the radius around the earthquake to download data from.\n 
                                        Note that the larger the radius, the longer the app will take to run.""",
                                        interactive=True)
                
                max_waveforms_inputs = gr.Slider(minimum=1,
                                maximum=100,
                                value=10,
                                label="Max waveforms per section",
                                step=1,
                                info="Maximum number of waveforms to show per section\n (to avoid long prediction times)",
                                interactive=True,
                                )
            with gr.Column(scale=2):
                P_thres_inputs = gr.Slider(minimum=0.01,
                                maximum=1,
                                value=0.1,
                                label="P uncertainty threshold, s",
                                step=0.01,
                                info="Acceptable uncertainty for P picks expressed in std() seconds",
                                interactive=True,
                                )
                S_thres_inputs = gr.Slider(minimum=0.01,
                                maximum=1,
                                value=0.2,
                                label="S uncertainty threshold, s",
                                step=0.01,
                                info="Acceptable uncertainty for S picks expressed in std() seconds",
                                interactive=True,
                                )
            
        button = gr.Button("Predict phases")
        output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)

        with gr.Row():
            output_picks = gr.Dataframe(label='Pick data', 
                                        type='pandas', 
                                        interactive=False)
            output_csv = gr.File(label="Output File", file_types=[".csv"])

        button.click(predict_on_section, 
                 inputs=[client_inputs, timestamp_inputs, 
                         eq_lat_inputs, eq_lon_inputs, 
                         radius_inputs, source_depth_inputs, 
                         velocity_inputs, max_waveforms_inputs,
                         P_thres_inputs, S_thres_inputs],
                 outputs=[output_image, output_picks, output_csv])
        
        with gr.Row():
            with gr.Column(scale=2):
                inputs_vel_model = [
                    ## FIX FILE NAME ISSUE
                    gr.Slider(minimum=-180, maximum=180, value=0, step=5, label="Azimuth", interactive=True),
                    gr.Slider(minimum=-90, maximum=90, value=30, step=5, label="Elevation", interactive=True)
                ]
                button = gr.Button("Look at 3D Velocities")
            outputs_vel_model = gr.Image(label="3D Velocity Model")

            button.click(compute_velocity_model, 
                         inputs=inputs_vel_model, 
                         outputs=outputs_vel_model)


            


demo.launch()