Spaces:
Runtime error
Runtime error
File size: 33,099 Bytes
8646273 15dbd99 8646273 66ff4f5 871cd60 636d133 5734e39 8646273 636d133 8646273 2ae4679 15dbd99 eeca930 2ae4679 4ea56e8 a237ee5 f5471b4 636d133 f5471b4 636d133 f5471b4 636d133 f5471b4 639fbda 8646273 636d133 f5471b4 a237ee5 639fbda f5471b4 636d133 a237ee5 639fbda bfda450 8646273 a237ee5 8646273 50edc36 8646273 bfda450 8646273 a237ee5 639fbda 5734e39 639fbda 8646273 636d133 8646273 636d133 8646273 636d133 8646273 636d133 a237ee5 636d133 a237ee5 636d133 a237ee5 636d133 a237ee5 636d133 a237ee5 636d133 a237ee5 636d133 a237ee5 636d133 a237ee5 636d133 8646273 636d133 8646273 5734e39 636d133 5734e39 4ea56e8 636d133 68d65f8 636d133 d4306c7 8646273 d4306c7 8646273 5734e39 8646273 871cd60 d4306c7 871cd60 5734e39 636d133 5734e39 636d133 5734e39 636d133 d4306c7 4ea56e8 871cd60 636d133 5734e39 871cd60 5734e39 636d133 d4306c7 636d133 d4306c7 5734e39 d4306c7 5734e39 636d133 6767598 636d133 4ea56e8 636d133 a237ee5 636d133 5734e39 636d133 5734e39 636d133 eeca930 5734e39 636d133 d4306c7 68d65f8 d4306c7 636d133 5734e39 636d133 5734e39 636d133 5734e39 639fbda 636d133 5734e39 639fbda 6767598 636d133 6767598 636d133 5734e39 636d133 5734e39 636d133 5734e39 68d65f8 d4306c7 5734e39 636d133 d4306c7 636d133 6767598 636d133 6767598 4ea56e8 5734e39 eeca930 636d133 5734e39 636d133 5734e39 636d133 5734e39 636d133 5734e39 636d133 5734e39 636d133 15dbd99 5734e39 6767598 636d133 15dbd99 4ea56e8 636d133 15dbd99 6767598 15dbd99 636d133 15dbd99 636d133 5734e39 6767598 636d133 6767598 636d133 5734e39 6767598 636d133 5734e39 636d133 eeca930 4ea56e8 636d133 5734e39 636d133 eeca930 636d133 5734e39 636d133 5734e39 eeca930 636d133 d4306c7 66ff4f5 636d133 66ff4f5 636d133 a237ee5 50edc36 8646273 636d133 50edc36 636d133 5734e39 636d133 5734e39 636d133 5734e39 636d133 5734e39 a237ee5 636d133 f5471b4 636d133 639fbda 8646273 636d133 639fbda 636d133 8646273 eeca930 636d133 eeca930 6767598 eeca930 636d133 eeca930 636d133 eeca930 636d133 eeca930 636d133 eeca930 636d133 eeca930 5734e39 eeca930 636d133 eeca930 636d133 68d65f8 636d133 eeca930 636d133 eeca930 636d133 6767598 636d133 8646273 636d133 66ff4f5 636d133 66ff4f5 68d65f8 636d133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.
import gradio as gr
import numpy as np
import pandas as pd
from phasehunter.data_preparation import prepare_waveform
import torch
import io
from scipy.stats import gaussian_kde
from scipy.signal import resample
from bmi_topography import Topography
import earthpy.spatial as es
import obspy
from obspy.clients.fdsn import Client
from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException
from obspy.geodetics.base import locations2degrees
from obspy.taup import TauPyModel
from obspy.taup.helper_classes import SlownessModelError
from obspy.clients.fdsn.header import URL_MAPPINGS
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from mpl_toolkits.axes_grid1 import ImageGrid
from glob import glob
def resample_waveform(waveform, original_freq, target_freq):
"""
Resample a waveform from original frequency to target frequency using SciPy's resample function.
Args:
waveform (numpy.ndarray): The input waveform as a 1D array.
original_freq (float): The original sampling frequency of the waveform.
target_freq (float): The target sampling frequency of the waveform.
Returns:
resampled_waveform (numpy.ndarray): The resampled waveform as a 1D array.
"""
# Calculate the resampling ratio
resampling_ratio = target_freq / original_freq
# Calculate the new length of the resampled waveform
resampled_length = int(waveform.shape[-1] * resampling_ratio)
# Resample the waveform using SciPy's resample function
resampled_waveform = resample(waveform, resampled_length, axis=-1)
return resampled_waveform
def sort_channels_to_ZNE(waveform, channels):
# Input:
# waveform: a 2D numpy array with shape (3, n), where n is the number of samples
# channels: a list or tuple of 3 strings representing the channel order, e.g. ('N', 'Z', 'E')
channels = list(channels)
if len(channels) != 3 or set(channels) != {'Z', 'N', 'E'}:
raise ValueError("Invalid channel input. It should be a permutation of 'Z', 'N', and 'E'.")
# Find the indices of the Z, N, and E channels
z_index = channels.index('Z')
n_index = channels.index('N')
e_index = channels.index('E')
print(z_index, n_index, e_index)
# Sort the channels to ZNE
sorted_waveform = waveform[[z_index, n_index, e_index], :]
return sorted_waveform
def make_prediction(waveform, sampling_rate, order):
waveform = np.load(waveform)
print('Loaded', waveform.shape)
if len(waveform.shape) == 1:
waveform = waveform.reshape(1, waveform.shape[0])
elif waveform.shape[0] == 3:
waveform = sort_channels_to_ZNE(waveform, order)
if sampling_rate != 100:
waveform = resample_waveform(waveform, sampling_rate, 100)
print('Resampled', waveform.shape)
orig_waveform = waveform[:, :6000].copy()
processed_input = prepare_waveform(waveform)
# Make prediction
with torch.inference_mode():
output = model(processed_input)
p_phase = output[:, 0]
s_phase = output[:, 1]
return processed_input, p_phase, s_phase, orig_waveform
def mark_phases(waveform, uploaded_file, p_thres, s_thres, sampling_rate, order):
if uploaded_file is not None:
waveform = uploaded_file.name
processed_input, p_phase, s_phase, orig_waveform = make_prediction(waveform, sampling_rate, order)
# Create a plot of the waveform with the phases marked
if sum(processed_input[0][2] == 0): #if input is 1C
fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)
ax[0].plot(orig_waveform[0], color='black', lw=1)
ax[0].set_ylabel('Norm. Ampl.')
else: #if input is 3C
fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
ax[0].plot(orig_waveform[0], color='black', lw=1)
ax[1].plot(orig_waveform[1], color='black', lw=1)
ax[2].plot(orig_waveform[2], color='black', lw=1)
ax[0].set_ylabel('Z')
ax[1].set_ylabel('N')
ax[2].set_ylabel('E')
do_we_have_p = (p_phase.std().item()*60 < p_thres)
if do_we_have_p:
p_phase_plot = p_phase*processed_input.shape[-1]
p_kde = gaussian_kde(p_phase_plot)
p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )
ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')
else:
ax[-1].text(0.5, 0.75, 'No P phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)
do_we_have_s = (s_phase.std().item()*60 < s_thres)
if do_we_have_s:
s_phase_plot = s_phase*processed_input.shape[-1]
s_kde = gaussian_kde(s_phase_plot)
s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )
ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')
for a in ax:
a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P', alpha=do_we_have_p)
a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S', alpha=do_we_have_s)
else:
ax[-1].text(0.5, 0.25, 'No S phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)
ax[-1].set_xlabel('Time, samples')
ax[-1].set_ylabel('Uncert., samples')
ax[-1].legend()
plt.subplots_adjust(hspace=0., wspace=0.)
# Convert the plot to an image and return it
fig.canvas.draw()
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
def bin_distances(distances, bin_size=10):
# Bin the distances into groups of `bin_size` kilometers
binned_distances = {}
for i, distance in enumerate(distances):
bin_index = distance // bin_size
if bin_index not in binned_distances:
binned_distances[bin_index] = (distance, i)
elif i < binned_distances[bin_index][1]:
binned_distances[bin_index] = (distance, i)
# Select the first distance in each bin and its index
first_distances = []
for bin_index in binned_distances:
first_distance, first_distance_index = binned_distances[bin_index]
first_distances.append(first_distance_index)
return first_distances
def variance_coefficient(residuals):
# calculate the variance of the residuals
var = residuals.var()
# scale the variance to a coefficient between 0 and 1
coeff = 1 - (var / (residuals.max() - residuals.min()))
return coeff
def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms, conf_thres_P, conf_thres_S):
distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []
taup_model = TauPyModel(model=velocity_model)
client = Client(client_name)
window = radius_km / 111.2
max_waveforms = int(max_waveforms)
assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds"
assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds"
starttime = obspy.UTCDateTime(timestamp)
endtime = starttime + 120
try:
print('Starting to download inventory')
inv = client.get_stations(network="*", station="*", location="*", channel="*H*",
starttime=starttime, endtime=endtime,
minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),
minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window),
level='station')
print('Finished downloading inventory')
except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
fig, ax = plt.subplots()
ax.text(0.5,0.5,'Something is wrong with the data provider, try another')
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
waveforms = []
cached_waveforms = glob("data/cached/*.mseed")
for network in inv:
if network.code == 'SY':
continue
for station in network:
print(f"Processing {network.code}.{station.code}...")
distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)
arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km,
distance_in_degree=distance,
phase_list=["P", "S"])
if len(arrivals) > 0:
starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15
endtime = starttime + 60
try:
filename=f'{network.code}_{station.code}_{starttime}'
if f"data/cached/{filename}.mseed" not in cached_waveforms:
print(f'Downloading waveform for {filename}')
waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*",
starttime=starttime, endtime=endtime)
waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED")
print('Finished downloading and caching waveform')
else:
print('Reading cached waveform')
waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed")
except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
print(f'Skipping {network.code}_{station.code}_{starttime}')
continue
waveform = waveform.select(channel="H[BH][ZNE]")
waveform = waveform.merge(fill_value=0)
waveform = waveform[:3].sort(keys=['channel'], reverse=True)
len_check = [len(x.data) for x in waveform]
if len(set(len_check)) > 1:
continue
if len(waveform) == 3:
try:
waveform = prepare_waveform(np.stack([x.data for x in waveform]))
distances.append(distance)
t0s.append(starttime)
st_lats.append(station.latitude)
st_lons.append(station.longitude)
waveforms.append(waveform)
names.append(f"{network.code}.{station.code}")
print(f"Added {network.code}.{station.code} to the list of waveforms")
except:
continue
# If there are no waveforms, return an empty plot
if len(waveforms) == 0:
print('No waveforms found')
fig, ax = plt.subplots()
# prints "No waveforms found" on the plot aligned at center and vertically
ax.text(0.5,0.5,'No waveforms found', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
output_picks = pd.DataFrame()
output_picks.to_csv('data/picks.csv', index=False)
output_csv = 'data/picks.csv'
return image, output_picks, output_csv
first_distances = bin_distances(distances, bin_size=10/111.2)
# Edge case when there are way too many waveforms to process
selection_indexes = np.random.choice(first_distances,
np.min([len(first_distances), max_waveforms]),
replace=False)
waveforms = np.array(waveforms)[selection_indexes]
distances = np.array(distances)[selection_indexes]
t0s = np.array(t0s)[selection_indexes]
st_lats = np.array(st_lats)[selection_indexes]
st_lons = np.array(st_lons)[selection_indexes]
names = np.array(names)[selection_indexes]
waveforms = [torch.tensor(waveform) for waveform in waveforms]
print('Starting to run predictions')
with torch.no_grad():
waveforms_torch = torch.vstack(waveforms)
output = model(waveforms_torch)
p_phases = output[:, 0]
s_phases = output[:, 1]
p_phases = p_phases.reshape(len(waveforms),-1)
s_phases = s_phases.reshape(len(waveforms),-1)
# Max confidence - min variance
p_max_confidence = p_phases.std(axis=-1).min()
s_max_confidence = s_phases.std(axis=-1).min()
print(f"Starting plotting {len(waveforms)} waveforms")
fig, ax = plt.subplots(ncols=3, figsize=(10, 3))
# Plot topography
print('Fetching topography')
params = Topography.DEFAULT.copy()
extra_window = 0.5
params["south"] = np.min([st_lats.min(), eq_lat])-extra_window
params["north"] = np.max([st_lats.max(), eq_lat])+extra_window
params["west"] = np.min([st_lons.min(), eq_lon])-extra_window
params["east"] = np.max([st_lons.max(), eq_lon])+extra_window
topo_map = Topography(**params)
topo_map.fetch()
topo_map.load()
print('Plotting topo')
hillshade = es.hillshade(topo_map.da[0], altitude=10)
topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)
topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)
ax[1].imshow(hillshade, cmap="Greys", alpha=0.5)
output_picks = pd.DataFrame({'station_name' : [],
'st_lat' : [], 'st_lon' : [],
'starttime' : [],
'p_phase, s' : [], 'p_uncertainty, s' : [],
's_phase, s' : [], 's_uncertainty, s' : [],
'velocity_p, km/s' : [], 'velocity_s, km/s' : []})
for i in range(len(waveforms)):
print(f"Plotting waveform {i+1}/{len(waveforms)}")
current_P = p_phases[i]
current_S = s_phases[i]
x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]
x = mdates.date2num(x)
# Normalize confidence for the plot
p_conf = 1/(current_P.std()/p_max_confidence).item()
s_conf = 1/(current_S.std()/s_max_confidence).item()
delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp
ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)
if (current_P.std().item()*60 < conf_thres_P) or (current_S.std().item()*60 < conf_thres_S):
ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')
ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')
velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()
velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()
# Generate an array from st_lat to eq_lat and from st_lon to eq_lon
x = np.linspace(st_lons[i], eq_lon, 50)
y = np.linspace(st_lats[i], eq_lat, 50)
# Plot the array
ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.1, vmin=0, vmax=8)
ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.1, vmin=0, vmax=8)
else:
velocity_p = np.nan
velocity_s = np.nan
ax[0].set_ylabel('Z')
print(f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}")
output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]],
'st_lat' : [st_lats[i]], 'st_lon' : [st_lons[i]],
'starttime' : [str(t0s[i])],
'p_phase, s' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty, s' : [current_P.std().item()*60],
's_phase, s' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty, s' : [current_S.std().item()*60],
'velocity_p, km/s' : [velocity_p], 'velocity_s, km/s' : [velocity_s]}))
# Add legend
ax[0].scatter(None, None, color='r', marker='|', label='P')
ax[0].scatter(None, None, color='b', marker='|', label='S')
ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))
ax[0].legend()
print('Plotting stations')
for i in range(1,3):
ax[i].scatter(st_lons, st_lats, color='b', label='Stations')
ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')
ax[i].set_aspect('equal')
ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50)
fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,
wspace=0.02, hspace=0.02)
cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])
cbar = fig.colorbar(ax[2].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), cax=cb_ax)
cbar.set_label('Velocity (km/s)')
ax[1].set_title('P Velocity')
ax[2].set_title('S Velocity')
for a in ax:
a.tick_params(axis='both', which='major', labelsize=8)
plt.subplots_adjust(hspace=0., wspace=0.5)
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
output_csv = f'data/velocity/{eq_lat}_{eq_lon}_{source_depth_km}_{timestamp}_{len(waveforms)}.csv'
output_picks.to_csv(output_csv, index=False)
return image, output_picks, output_csv
import numpy as np
from matplotlib import colors, cm
# Function to find the closest index for a given value in an array
def find_closest_index(array, value):
return np.argmin(np.abs(array - value))
def compute_velocity_model(azimuth, elevation):
filename = list(output_csv.temp_files)[0]
df = pd.read_csv(filename)
print(df)
filename = filename.split('/')[-1]
# Current EQ location
eq_lat = float(filename.split("_")[0])
eq_lon = float(filename.split("_")[1])
eq_depth = float(filename.split("_")[2])
# Define the region of interest (latitude, longitude, and depth ranges)
lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat]))
lon_range = (np.min([df.st_lon.min(), eq_lon]), np.max([df.st_lon.max(), eq_lon]))
depth_range = (0, 50)
# Define the number of nodes in each dimension
n_lat = 10
n_lon = 10
n_depth = 10
num_points = 100
# Create the grid
lat_values = np.linspace(lat_range[0], lat_range[1], n_lat)
lon_values = np.linspace(lon_range[0], lon_range[1], n_lon)
depth_values = np.linspace(depth_range[0], depth_range[1], n_depth)
# Initialize the velocity model with constant values
initial_velocity = 0 # km/s, this can be P-wave or S-wave velocity
velocity_model = np.full((n_lat, n_lon, n_depth), initial_velocity, dtype=float)
# Loop through the stations and update the velocity model
for i in range(len(df)):
if ~np.isnan(df['velocity_p, km/s'].iloc[i]):
# Interpolate coordinates along the great circle path between the earthquake and the station
lon_deg = np.linspace(df.st_lon.iloc[i], eq_lon, num_points)
lat_deg = np.linspace(df.st_lat.iloc[i], eq_lat, num_points)
depth_interpolated = np.interp(np.linspace(0, 1, num_points), [0, 1], [eq_depth, 0])
# Loop through the interpolated coordinates and update the grid cells with the average P-wave velocity
for lat, lon, depth in zip(lat_deg, lon_deg, depth_interpolated):
lat_index = find_closest_index(lat_values, lat)
lon_index = find_closest_index(lon_values, lon)
depth_index = find_closest_index(depth_values, depth)
if velocity_model[lat_index, lon_index, depth_index] == initial_velocity:
velocity_model[lat_index, lon_index, depth_index] = df['velocity_p, km/s'].iloc[i]
else:
velocity_model[lat_index, lon_index, depth_index] = (velocity_model[lat_index, lon_index, depth_index] +
df['velocity_p, km/s'].iloc[i]) / 2
# Create the figure and axis
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection='3d')
# Set the plot limits
ax.set_xlim3d(lat_range[0], lat_range[1])
ax.set_ylim3d(lon_range[0], lon_range[1])
ax.set_zlim3d(depth_range[1], depth_range[0])
ax.set_xlabel('Latitude')
ax.set_ylabel('Longitude')
ax.set_zlabel('Depth (km)')
ax.set_title('Velocity Model')
# Create the meshgrid
x, y, z = np.meshgrid(
np.linspace(lat_range[0], lat_range[1], velocity_model.shape[0]+1),
np.linspace(lon_range[0], lon_range[1], velocity_model.shape[1]+1),
np.linspace(depth_range[0], depth_range[1], velocity_model.shape[2]+1),
indexing='ij'
)
# Create the color array
norm = plt.Normalize(vmin=velocity_model.min(), vmax=velocity_model.max())
colors = plt.cm.plasma(norm(velocity_model))
# Plot the voxels
ax.voxels(x, y, z, velocity_model > 0, facecolors=colors, alpha=0.5, edgecolor='k')
# Set the view angle
ax.view_init(elev=elevation, azim=azimuth)
m = cm.ScalarMappable(cmap=plt.cm.plasma, norm=norm)
m.set_array([])
plt.colorbar(m)
# Show the plot
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
model = torch.jit.load("model.pt")
with gr.Blocks() as demo:
gr.HTML("""
<div style="padding: 20px; border-radius: 10px;">
<h1 style="font-size: 30px; text-align: center; margin-bottom: 20px;">PhaseHunter <span style="animation: arrow-anim 10s linear infinite; display: inline-block; transform: rotate(45deg) translateX(-20px);">🏹</span>
<style>
@keyframes arrow-anim {
0% { transform: translateX(-20px); }
50% { transform: translateX(20px); }
100% { transform: translateX(-20px); }
}
</style></h1>
<p style="font-size: 16px; margin-bottom: 20px;">Detect <span style="background-image: linear-gradient(to right, #ED213A, #93291E);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;">P</span> and <span style="background-image: linear-gradient(to right, #00B4DB, #0083B0);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;">S</span> seismic phases with <span style="background-image: linear-gradient(to right, #f12711, #f5af19);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;">uncertainty</span></p>
<ul style="font-size: 16px; margin-bottom: 40px;">
<li>Detect seismic phases by selecting a sample waveform or uploading your own waveform in <code>.npy</code> format.</li>
<li>Select an earthquake from the global earthquake catalogue and PhaseHunter will analyze seismic stations in the given radius.</li>
<li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>
</ul>
</div>
""")
with gr.Tab("Try on a single station"):
with gr.Row():
# Define the input and output types for Gradio
inputs = gr.Dropdown(
["data/sample/sample_0.npy",
"data/sample/sample_1.npy",
"data/sample/sample_2.npy"],
label="Sample waveform",
info="Select one of the samples",
value = "data/sample/sample_0.npy"
)
with gr.Column(scale=1):
P_thres_inputs = gr.Slider(minimum=0.01,
maximum=1,
value=0.1,
label="P uncertainty threshold, s",
step=0.01,
info="Acceptable uncertainty for P picks expressed in std() seconds",
interactive=True,
)
S_thres_inputs = gr.Slider(minimum=0.01,
maximum=1,
value=0.2,
label="S uncertainty threshold, s",
step=0.01,
info="Acceptable uncertainty for S picks expressed in std() seconds",
interactive=True,
)
with gr.Column(scale=1):
upload = gr.File(label="Or upload your own waveform")
sampling_rate_inputs = gr.Slider(minimum=10,
maximum=1000,
value=100,
label="Samlping rate, Hz",
step=10,
info="Sampling rate of the waveform",
interactive=True,
)
order_input = gr.Text(value='ZNE',
label='Channel order',
info='Order of the channels in the waveform file (e.g. ZNE)')
button = gr.Button("Predict phases")
outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)
button.click(mark_phases, inputs=[inputs, upload,
P_thres_inputs, S_thres_inputs,
sampling_rate_inputs, order_input],
outputs=outputs)
with gr.Tab("Select earthquake from catalogue"):
gr.HTML("""
<div style="padding: 20px; border-radius: 10px; font-size: 16px;">
<p style="font-weight: bold; font-size: 24px; margin-bottom: 20px;">Using PhaseHunter to Analyze Seismic Waveforms</p>
<p>Select an earthquake from the global earthquake catalogue (e.g. <a href="https://earthquake.usgs.gov/earthquakes/map">USGS</a>) and the app will download the waveform from the FDSN client of your choice. The app will use a velocity model of your choice to select appropriate time windows for each station within a specified radius of the earthquake.</p>
<p>The app will then analyze the waveforms and mark the detected phases on the waveform. Pick data for each waveform is reported in seconds from the start of the waveform.</p>
<p>Velocities are derived from distance and travel time determined by PhaseHunter picks (<span style="font-style: italic;">v = distance/predicted_pick_time</span>). The background of the velocity plot is colored by DEM.</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
client_inputs = gr.Dropdown(
choices = list(URL_MAPPINGS.keys()),
label="FDSN Client",
info="Select one of the available FDSN clients",
value = "IRIS",
interactive=True
)
velocity_inputs = gr.Dropdown(
choices = ['1066a', '1066b', 'ak135',
'ak135f', 'herrin', 'iasp91',
'jb', 'prem', 'pwdk'],
label="1D velocity model",
info="Velocity model for station selection",
value = "1066a",
interactive=True
)
with gr.Column(scale=2):
timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',
placeholder='YYYY-MM-DD HH:MM:SS',
label="Timestamp",
info="Timestamp of the earthquake",
max_lines=1,
interactive=True)
source_depth_inputs = gr.Number(value=10,
label="Source depth (km)",
info="Depth of the earthquake",
interactive=True)
with gr.Column(scale=2):
eq_lat_inputs = gr.Number(value=35.766,
label="Latitude",
info="Latitude of the earthquake",
interactive=True)
eq_lon_inputs = gr.Number(value=-117.605,
label="Longitude",
info="Longitude of the earthquake",
interactive=True)
with gr.Column(scale=2):
radius_inputs = gr.Slider(minimum=1,
maximum=200,
value=50,
label="Radius (km)",
step=10,
info="""Select the radius around the earthquake to download data from.\n
Note that the larger the radius, the longer the app will take to run.""",
interactive=True)
max_waveforms_inputs = gr.Slider(minimum=1,
maximum=100,
value=10,
label="Max waveforms per section",
step=1,
info="Maximum number of waveforms to show per section\n (to avoid long prediction times)",
interactive=True,
)
with gr.Column(scale=2):
P_thres_inputs = gr.Slider(minimum=0.01,
maximum=1,
value=0.1,
label="P uncertainty threshold, s",
step=0.01,
info="Acceptable uncertainty for P picks expressed in std() seconds",
interactive=True,
)
S_thres_inputs = gr.Slider(minimum=0.01,
maximum=1,
value=0.2,
label="S uncertainty threshold, s",
step=0.01,
info="Acceptable uncertainty for S picks expressed in std() seconds",
interactive=True,
)
button = gr.Button("Predict phases")
output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)
with gr.Row():
output_picks = gr.Dataframe(label='Pick data',
type='pandas',
interactive=False)
output_csv = gr.File(label="Output File", file_types=[".csv"])
button.click(predict_on_section,
inputs=[client_inputs, timestamp_inputs,
eq_lat_inputs, eq_lon_inputs,
radius_inputs, source_depth_inputs,
velocity_inputs, max_waveforms_inputs,
P_thres_inputs, S_thres_inputs],
outputs=[output_image, output_picks, output_csv])
with gr.Row():
with gr.Column(scale=2):
inputs_vel_model = [
## FIX FILE NAME ISSUE
gr.Slider(minimum=-180, maximum=180, value=0, step=5, label="Azimuth", interactive=True),
gr.Slider(minimum=-90, maximum=90, value=30, step=5, label="Elevation", interactive=True)
]
button = gr.Button("Look at 3D Velocities")
outputs_vel_model = gr.Image(label="3D Velocity Model")
button.click(compute_velocity_model,
inputs=inputs_vel_model,
outputs=outputs_vel_model)
demo.launch() |