crimeacs commited on
Commit
636d133
·
1 Parent(s): f5471b4

Added velocity model builder 0.01

Browse files
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
Gradio_app.ipynb CHANGED
@@ -2,14 +2,14 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 30,
6
  "metadata": {},
7
  "outputs": [
8
  {
9
  "name": "stdout",
10
  "output_type": "stream",
11
  "text": [
12
- "Running on local URL: http://127.0.0.1:7876\n",
13
  "\n",
14
  "To create a public link, set `share=True` in `launch()`.\n"
15
  ]
@@ -17,7 +17,7 @@
17
  {
18
  "data": {
19
  "text/html": [
20
- "<div><iframe src=\"http://127.0.0.1:7876/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
21
  ],
22
  "text/plain": [
23
  "<IPython.core.display.HTML object>"
@@ -30,7 +30,7 @@
30
  "data": {
31
  "text/plain": []
32
  },
33
- "execution_count": 30,
34
  "metadata": {},
35
  "output_type": "execute_result"
36
  },
@@ -38,16 +38,215 @@
38
  "name": "stdout",
39
  "output_type": "stream",
40
  "text": [
41
- "Loaded (6000,)\n",
42
- "Reshaped (1, 6000)\n",
43
- "Resampled (1, 3000)\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  ]
45
  },
46
  {
47
  "name": "stderr",
48
  "output_type": "stream",
49
  "text": [
50
- "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  ]
52
  }
53
  ],
@@ -455,9 +654,10 @@
455
  " fig.canvas.draw();\n",
456
  " image = np.array(fig.canvas.renderer.buffer_rgba())\n",
457
  " plt.close(fig)\n",
458
- " output_picks.to_csv(f'data/velocity/{eq_lat}_{eq_lon}_{timestamp}_{len(waveforms)}.csv', index=False)\n",
459
- " output_csv = f'data/velocity/{eq_lat}_{eq_lon}_{timestamp}_{len(waveforms)}.csv'\n",
460
  "\n",
 
 
 
461
  " return image, output_picks, output_csv\n",
462
  "\n",
463
  "import numpy as np\n",
@@ -468,17 +668,16 @@
468
  " return np.argmin(np.abs(array - value))\n",
469
  "\n",
470
  "def compute_velocity_model(azimuth, elevation):\n",
471
- " filename = output_csv\n",
 
472
  " df = pd.read_csv(filename)\n",
473
- "\n",
 
 
474
  " # Current EQ location\n",
475
- " filename = filename.split(\"/\")[-1]\n",
476
  " eq_lat = float(filename.split(\"_\")[0])\n",
477
  " eq_lon = float(filename.split(\"_\")[1])\n",
478
- "\n",
479
- " ## FIX THIS LATTER\n",
480
- " eq_depth = 10 ##FIX THIS LATTER\n",
481
- " ## FIX THIS LATTER\n",
482
  "\n",
483
  " # Define the region of interest (latitude, longitude, and depth ranges)\n",
484
  " lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat]))\n",
@@ -595,7 +794,53 @@
595
  " </ul>\n",
596
  "</div>\n",
597
  "\"\"\")\n",
598
- " \n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599
  " with gr.Tab(\"Select earthquake from catalogue\"):\n",
600
  "\n",
601
  " gr.HTML(\"\"\"\n",
@@ -717,53 +962,6 @@
717
  " inputs=inputs_vel_model, \n",
718
  " outputs=outputs_vel_model)\n",
719
  "\n",
720
- " with gr.Tab(\"Try on a single station\"):\n",
721
- " with gr.Row(): \n",
722
- " # Define the input and output types for Gradio\n",
723
- " inputs = gr.Dropdown(\n",
724
- " [\"data/sample/sample_0.npy\", \n",
725
- " \"data/sample/sample_1.npy\", \n",
726
- " \"data/sample/sample_2.npy\"], \n",
727
- " label=\"Sample waveform\", \n",
728
- " info=\"Select one of the samples\",\n",
729
- " value = \"data/sample/sample_0.npy\"\n",
730
- " )\n",
731
- " with gr.Column(scale=1):\n",
732
- " P_thres_inputs = gr.Slider(minimum=0.01,\n",
733
- " maximum=1,\n",
734
- " value=0.1,\n",
735
- " label=\"P uncertainty threshold, s\",\n",
736
- " step=0.01,\n",
737
- " info=\"Acceptable uncertainty for P picks expressed in std() seconds\",\n",
738
- " interactive=True,\n",
739
- " )\n",
740
- " \n",
741
- " S_thres_inputs = gr.Slider(minimum=0.01,\n",
742
- " maximum=1,\n",
743
- " value=0.2,\n",
744
- " label=\"S uncertainty threshold, s\",\n",
745
- " step=0.01,\n",
746
- " info=\"Acceptable uncertainty for S picks expressed in std() seconds\",\n",
747
- " interactive=True,\n",
748
- " )\n",
749
- " with gr.Column(scale=1):\n",
750
- " upload = gr.File(label=\"Or upload your own waveform\")\n",
751
- " sampling_rate_inputs = gr.Slider(minimum=10,\n",
752
- " maximum=1000,\n",
753
- " value=100,\n",
754
- " label=\"Samlping rate, Hz\",\n",
755
- " step=10,\n",
756
- " info=\"Sampling rate of the waveform\",\n",
757
- " interactive=True,\n",
758
- " )\n",
759
- "\n",
760
- " button = gr.Button(\"Predict phases\")\n",
761
- " outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)\n",
762
- " \n",
763
- " button.click(mark_phases, inputs=[inputs, upload, \n",
764
- " P_thres_inputs, S_thres_inputs,\n",
765
- " sampling_rate_inputs], \n",
766
- " outputs=outputs)\n",
767
  "\n",
768
  " \n",
769
  "\n",
@@ -840,54 +1038,102 @@
840
  },
841
  {
842
  "cell_type": "code",
843
- "execution_count": 24,
844
  "metadata": {},
845
  "outputs": [
846
- {
847
- "name": "stdout",
848
- "output_type": "stream",
849
- "text": [
850
- "Running on local URL: http://127.0.0.1:7869\n",
851
- "\n",
852
- "To create a public link, set `share=True` in `launch()`.\n"
853
- ]
854
- },
855
  {
856
  "data": {
857
- "text/html": [
858
- "<div><iframe src=\"http://127.0.0.1:7869/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
859
- ],
860
  "text/plain": [
861
- "<IPython.core.display.HTML object>"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
862
  ]
863
  },
864
- "metadata": {},
865
- "output_type": "display_data"
866
- },
867
- {
868
- "data": {
869
- "text/plain": []
870
- },
871
- "execution_count": 24,
872
  "metadata": {},
873
  "output_type": "execute_result"
874
- },
875
- {
876
- "name": "stderr",
877
- "output_type": "stream",
878
- "text": [
879
- "/var/folders/ky/4j6xbvhs5m583jflkhyzxf9h0000gn/T/ipykernel_19576/4006067033.py:95: MatplotlibDeprecationWarning: Unable to determine Axes to steal space for Colorbar. Using gca(), but will raise in the future. Either provide the *cax* argument to use as the Axes for the Colorbar, provide the *ax* argument to steal space from it, or add *mappable* to an Axes.\n",
880
- " plt.colorbar(m)\n"
881
- ]
882
  }
883
  ],
884
  "source": [
885
- "import matplotlib.pyplot as plt\n",
886
- "import numpy as np\n",
887
- "import gradio as gr\n",
888
- " \n",
889
- "# Define the Gradio interface\n",
890
- "\n"
891
  ]
892
  },
893
  {
@@ -916,14 +1162,9 @@
916
  }
917
  ],
918
  "source": [
919
- "# generate sin of shape (1,5000)\n",
920
- "x = np.linspace(0, 10, 5000)\n",
921
- "y = np.sin(x)\n",
922
- "\n",
923
- "y_resampled = resample_waveform(y, 1000, 100)\n",
924
- "# plot sin\n",
925
- "plt.plot(x, y)\n",
926
- "plt.plot(x, y_resampled)"
927
  ]
928
  }
929
  ],
@@ -943,7 +1184,7 @@
943
  "name": "python",
944
  "nbconvert_exporter": "python",
945
  "pygments_lexer": "ipython3",
946
- "version": "3.9.8"
947
  },
948
  "orig_nbformat": 4
949
  },
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 17,
6
  "metadata": {},
7
  "outputs": [
8
  {
9
  "name": "stdout",
10
  "output_type": "stream",
11
  "text": [
12
+ "Running on local URL: http://127.0.0.1:7864\n",
13
  "\n",
14
  "To create a public link, set `share=True` in `launch()`.\n"
15
  ]
 
17
  {
18
  "data": {
19
  "text/html": [
20
+ "<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
21
  ],
22
  "text/plain": [
23
  "<IPython.core.display.HTML object>"
 
30
  "data": {
31
  "text/plain": []
32
  },
33
+ "execution_count": 17,
34
  "metadata": {},
35
  "output_type": "execute_result"
36
  },
 
38
  "name": "stdout",
39
  "output_type": "stream",
40
  "text": [
41
+ "Starting to download inventory\n",
42
+ "Finished downloading inventory\n",
43
+ "Processing CI.CCC...\n",
44
+ "Downloading waveform for CI_CCC_2019-07-04T17:33:40.494920Z\n",
45
+ "Skipping CI_CCC_2019-07-04T17:33:40.494920Z\n",
46
+ "Processing CI.CLC...\n",
47
+ "Processing CI.JRC2...\n",
48
+ "Reading cached waveform\n",
49
+ "Added CI.JRC2 to the list of waveforms\n",
50
+ "Processing CI.LRL...\n",
51
+ "Reading cached waveform\n",
52
+ "Added CI.LRL to the list of waveforms\n",
53
+ "Processing CI.MPM...\n",
54
+ "Reading cached waveform\n",
55
+ "Processing CI.Q0072...\n",
56
+ "Reading cached waveform\n",
57
+ "Processing CI.SLA...\n",
58
+ "Reading cached waveform\n",
59
+ "Added CI.SLA to the list of waveforms\n",
60
+ "Processing CI.SRT...\n",
61
+ "Reading cached waveform\n",
62
+ "Added CI.SRT to the list of waveforms\n",
63
+ "Processing CI.TOW2...\n",
64
+ "Reading cached waveform\n",
65
+ "Added CI.TOW2 to the list of waveforms\n",
66
+ "Processing CI.WBM...\n",
67
+ "Downloading waveform for CI_WBM_2019-07-04T17:33:40.063616Z\n",
68
+ "Skipping CI_WBM_2019-07-04T17:33:40.063616Z\n",
69
+ "Processing CI.WCS2...\n",
70
+ "Downloading waveform for CI_WCS2_2019-07-04T17:33:40.200958Z\n",
71
+ "Skipping CI_WCS2_2019-07-04T17:33:40.200958Z\n",
72
+ "Processing CI.WMF...\n",
73
+ "Reading cached waveform\n",
74
+ "Added CI.WMF to the list of waveforms\n",
75
+ "Processing CI.WNM...\n",
76
+ "Reading cached waveform\n",
77
+ "Processing CI.WRC2...\n",
78
+ "Downloading waveform for CI_WRC2_2019-07-04T17:33:38.698099Z\n",
79
+ "Skipping CI_WRC2_2019-07-04T17:33:38.698099Z\n",
80
+ "Processing CI.WRV2...\n",
81
+ "Reading cached waveform\n",
82
+ "Processing CI.WVP2...\n",
83
+ "Downloading waveform for CI_WVP2_2019-07-04T17:33:39.650402Z\n",
84
+ "Skipping CI_WVP2_2019-07-04T17:33:39.650402Z\n",
85
+ "Processing NP.1809...\n",
86
+ "Reading cached waveform\n",
87
+ "Processing NP.5419...\n",
88
+ "Reading cached waveform\n",
89
+ "Processing PB.B916...\n",
90
+ "Reading cached waveform\n",
91
+ "Processing PB.B917...\n",
92
+ "Reading cached waveform\n",
93
+ "Processing PB.B918...\n",
94
+ "Reading cached waveform\n",
95
+ "Processing PB.B921...\n",
96
+ "Reading cached waveform\n",
97
+ "Starting to run predictions\n"
98
  ]
99
  },
100
  {
101
  "name": "stderr",
102
  "output_type": "stream",
103
  "text": [
104
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:273: FutureWarning: The input object of type 'Tensor' is an array-like implementing one of the corresponding protocols (`__array__`, `__array_interface__` or `__array_struct__`); but not a sequence (or 0-D). In the future, this object will be coerced as if it was first converted using `np.array(obj)`. To retain the old behaviour, you have to either modify the type 'Tensor', or assign to an empty array created with `np.empty(correct_shape, dtype=object)`.\n",
105
+ " waveforms = np.array(waveforms)[selection_indexes]\n",
106
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:273: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
107
+ " waveforms = np.array(waveforms)[selection_indexes]\n",
108
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:280: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
109
+ " waveforms = [torch.tensor(waveform) for waveform in waveforms]\n"
110
+ ]
111
+ },
112
+ {
113
+ "name": "stdout",
114
+ "output_type": "stream",
115
+ "text": [
116
+ "Starting plotting 3 waveforms\n",
117
+ "Fetching topography\n",
118
+ "Plotting topo\n"
119
+ ]
120
+ },
121
+ {
122
+ "name": "stderr",
123
+ "output_type": "stream",
124
+ "text": [
125
+ "/Users/anovosel/miniconda3/envs/phasehunter/lib/python3.11/site-packages/bmi_topography/api_key.py:49: UserWarning: You are using a demo key to fetch data from OpenTopography, functionality will be limited. See https://bmi-topography.readthedocs.io/en/latest/#api-key for more information.\n",
126
+ " warnings.warn(\n"
127
+ ]
128
+ },
129
+ {
130
+ "name": "stdout",
131
+ "output_type": "stream",
132
+ "text": [
133
+ "Plotting waveform 1/3\n",
134
+ "Station 35.98249, -117.80885 has P velocity 4.13660431013202 and S velocity 2.2622770044299756\n",
135
+ "Plotting waveform 2/3\n"
136
+ ]
137
+ },
138
+ {
139
+ "name": "stderr",
140
+ "output_type": "stream",
141
+ "text": [
142
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:365: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
143
+ " output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]],\n",
144
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:365: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
145
+ " output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]],\n"
146
+ ]
147
+ },
148
+ {
149
+ "name": "stdout",
150
+ "output_type": "stream",
151
+ "text": [
152
+ "Station 35.69235, -117.75051 has P velocity 3.4155476453388767 and S velocity 1.67967367867923\n",
153
+ "Plotting waveform 3/3\n",
154
+ "Station 36.11758, -117.85486 has P velocity 4.745724852828504 and S velocity 2.6483289549749593\n",
155
+ "Plotting stations\n"
156
+ ]
157
+ },
158
+ {
159
+ "name": "stderr",
160
+ "output_type": "stream",
161
+ "text": [
162
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:365: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
163
+ " output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]],\n",
164
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:385: UserWarning: FixedFormatter should only be used together with FixedLocator\n",
165
+ " ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50)\n"
166
+ ]
167
+ },
168
+ {
169
+ "name": "stdout",
170
+ "output_type": "stream",
171
+ "text": [
172
+ " station_name st_lat st_lon starttime p_phase, s \\\n",
173
+ "0 CI.JRC2 35.98249 -117.80885 2019-07-04T17:33:39.947494Z 7.320212 \n",
174
+ "1 CI.SRT 35.69235 -117.75051 2019-07-04T17:33:38.029990Z 4.532020 \n",
175
+ "2 CI.WMF 36.11758 -117.85486 2019-07-04T17:33:41.867962Z 9.504385 \n",
176
+ "\n",
177
+ " p_uncertainty, s s_phase, s s_uncertainty, s velocity_p, km/s \\\n",
178
+ "0 0.020417 13.385108 0.028439 4.136604 \n",
179
+ "1 0.017490 9.215676 0.019568 3.415548 \n",
180
+ "2 0.015920 17.031569 0.046738 4.745725 \n",
181
+ "\n",
182
+ " velocity_s, km/s \n",
183
+ "0 2.262277 \n",
184
+ "1 1.679674 \n",
185
+ "2 2.648329 \n"
186
+ ]
187
+ },
188
+ {
189
+ "name": "stderr",
190
+ "output_type": "stream",
191
+ "text": [
192
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:503: MatplotlibDeprecationWarning: Unable to determine Axes to steal space for Colorbar. Using gca(), but will raise in the future. Either provide the *cax* argument to use as the Axes for the Colorbar, provide the *ax* argument to steal space from it, or add *mappable* to an Axes.\n",
193
+ " plt.colorbar(m)\n"
194
+ ]
195
+ },
196
+ {
197
+ "name": "stdout",
198
+ "output_type": "stream",
199
+ "text": [
200
+ " station_name st_lat st_lon starttime p_phase, s \\\n",
201
+ "0 CI.JRC2 35.98249 -117.80885 2019-07-04T17:33:39.947494Z 7.320212 \n",
202
+ "1 CI.SRT 35.69235 -117.75051 2019-07-04T17:33:38.029990Z 4.532020 \n",
203
+ "2 CI.WMF 36.11758 -117.85486 2019-07-04T17:33:41.867962Z 9.504385 \n",
204
+ "\n",
205
+ " p_uncertainty, s s_phase, s s_uncertainty, s velocity_p, km/s \\\n",
206
+ "0 0.020417 13.385108 0.028439 4.136604 \n",
207
+ "1 0.017490 9.215676 0.019568 3.415548 \n",
208
+ "2 0.015920 17.031569 0.046738 4.745725 \n",
209
+ "\n",
210
+ " velocity_s, km/s \n",
211
+ "0 2.262277 \n",
212
+ "1 1.679674 \n",
213
+ "2 2.648329 \n"
214
+ ]
215
+ },
216
+ {
217
+ "name": "stderr",
218
+ "output_type": "stream",
219
+ "text": [
220
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:503: MatplotlibDeprecationWarning: Unable to determine Axes to steal space for Colorbar. Using gca(), but will raise in the future. Either provide the *cax* argument to use as the Axes for the Colorbar, provide the *ax* argument to steal space from it, or add *mappable* to an Axes.\n",
221
+ " plt.colorbar(m)\n"
222
+ ]
223
+ },
224
+ {
225
+ "name": "stdout",
226
+ "output_type": "stream",
227
+ "text": [
228
+ " station_name st_lat st_lon starttime p_phase, s \\\n",
229
+ "0 CI.JRC2 35.98249 -117.80885 2019-07-04T17:33:39.947494Z 7.320212 \n",
230
+ "1 CI.SRT 35.69235 -117.75051 2019-07-04T17:33:38.029990Z 4.532020 \n",
231
+ "2 CI.WMF 36.11758 -117.85486 2019-07-04T17:33:41.867962Z 9.504385 \n",
232
+ "\n",
233
+ " p_uncertainty, s s_phase, s s_uncertainty, s velocity_p, km/s \\\n",
234
+ "0 0.020417 13.385108 0.028439 4.136604 \n",
235
+ "1 0.017490 9.215676 0.019568 3.415548 \n",
236
+ "2 0.015920 17.031569 0.046738 4.745725 \n",
237
+ "\n",
238
+ " velocity_s, km/s \n",
239
+ "0 2.262277 \n",
240
+ "1 1.679674 \n",
241
+ "2 2.648329 \n"
242
+ ]
243
+ },
244
+ {
245
+ "name": "stderr",
246
+ "output_type": "stream",
247
+ "text": [
248
+ "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:503: MatplotlibDeprecationWarning: Unable to determine Axes to steal space for Colorbar. Using gca(), but will raise in the future. Either provide the *cax* argument to use as the Axes for the Colorbar, provide the *ax* argument to steal space from it, or add *mappable* to an Axes.\n",
249
+ " plt.colorbar(m)\n"
250
  ]
251
  }
252
  ],
 
654
  " fig.canvas.draw();\n",
655
  " image = np.array(fig.canvas.renderer.buffer_rgba())\n",
656
  " plt.close(fig)\n",
 
 
657
  "\n",
658
+ " output_csv = f'data/velocity/{eq_lat}_{eq_lon}_{source_depth_km}_{timestamp}_{len(waveforms)}.csv'\n",
659
+ " output_picks.to_csv(output_csv, index=False)\n",
660
+ " \n",
661
  " return image, output_picks, output_csv\n",
662
  "\n",
663
  "import numpy as np\n",
 
668
  " return np.argmin(np.abs(array - value))\n",
669
  "\n",
670
  "def compute_velocity_model(azimuth, elevation):\n",
671
+ " filename = list(output_csv.temp_files)[0]\n",
672
+ " \n",
673
  " df = pd.read_csv(filename)\n",
674
+ " print(df)\n",
675
+ " filename = filename.split('/')[-1]\n",
676
+ " \n",
677
  " # Current EQ location\n",
 
678
  " eq_lat = float(filename.split(\"_\")[0])\n",
679
  " eq_lon = float(filename.split(\"_\")[1])\n",
680
+ " eq_depth = float(filename.split(\"_\")[2])\n",
 
 
 
681
  "\n",
682
  " # Define the region of interest (latitude, longitude, and depth ranges)\n",
683
  " lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat]))\n",
 
794
  " </ul>\n",
795
  "</div>\n",
796
  "\"\"\")\n",
797
+ " with gr.Tab(\"Try on a single station\"):\n",
798
+ " with gr.Row(): \n",
799
+ " # Define the input and output types for Gradio\n",
800
+ " inputs = gr.Dropdown(\n",
801
+ " [\"data/sample/sample_0.npy\", \n",
802
+ " \"data/sample/sample_1.npy\", \n",
803
+ " \"data/sample/sample_2.npy\"], \n",
804
+ " label=\"Sample waveform\", \n",
805
+ " info=\"Select one of the samples\",\n",
806
+ " value = \"data/sample/sample_0.npy\"\n",
807
+ " )\n",
808
+ " with gr.Column(scale=1):\n",
809
+ " P_thres_inputs = gr.Slider(minimum=0.01,\n",
810
+ " maximum=1,\n",
811
+ " value=0.1,\n",
812
+ " label=\"P uncertainty threshold, s\",\n",
813
+ " step=0.01,\n",
814
+ " info=\"Acceptable uncertainty for P picks expressed in std() seconds\",\n",
815
+ " interactive=True,\n",
816
+ " )\n",
817
+ " \n",
818
+ " S_thres_inputs = gr.Slider(minimum=0.01,\n",
819
+ " maximum=1,\n",
820
+ " value=0.2,\n",
821
+ " label=\"S uncertainty threshold, s\",\n",
822
+ " step=0.01,\n",
823
+ " info=\"Acceptable uncertainty for S picks expressed in std() seconds\",\n",
824
+ " interactive=True,\n",
825
+ " )\n",
826
+ " with gr.Column(scale=1):\n",
827
+ " upload = gr.File(label=\"Or upload your own waveform\")\n",
828
+ " sampling_rate_inputs = gr.Slider(minimum=10,\n",
829
+ " maximum=1000,\n",
830
+ " value=100,\n",
831
+ " label=\"Samlping rate, Hz\",\n",
832
+ " step=10,\n",
833
+ " info=\"Sampling rate of the waveform\",\n",
834
+ " interactive=True,\n",
835
+ " )\n",
836
+ "\n",
837
+ " button = gr.Button(\"Predict phases\")\n",
838
+ " outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)\n",
839
+ " \n",
840
+ " button.click(mark_phases, inputs=[inputs, upload, \n",
841
+ " P_thres_inputs, S_thres_inputs,\n",
842
+ " sampling_rate_inputs], \n",
843
+ " outputs=outputs) \n",
844
  " with gr.Tab(\"Select earthquake from catalogue\"):\n",
845
  "\n",
846
  " gr.HTML(\"\"\"\n",
 
962
  " inputs=inputs_vel_model, \n",
963
  " outputs=outputs_vel_model)\n",
964
  "\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
965
  "\n",
966
  " \n",
967
  "\n",
 
1038
  },
1039
  {
1040
  "cell_type": "code",
1041
+ "execution_count": 2,
1042
  "metadata": {},
1043
  "outputs": [
 
 
 
 
 
 
 
 
 
1044
  {
1045
  "data": {
 
 
 
1046
  "text/plain": [
1047
+ "['DEFAULT_TEMP_DIR',\n",
1048
+ " '__abstractmethods__',\n",
1049
+ " '__class__',\n",
1050
+ " '__delattr__',\n",
1051
+ " '__dict__',\n",
1052
+ " '__dir__',\n",
1053
+ " '__doc__',\n",
1054
+ " '__eq__',\n",
1055
+ " '__format__',\n",
1056
+ " '__ge__',\n",
1057
+ " '__getattribute__',\n",
1058
+ " '__getstate__',\n",
1059
+ " '__gt__',\n",
1060
+ " '__hash__',\n",
1061
+ " '__init__',\n",
1062
+ " '__init_subclass__',\n",
1063
+ " '__le__',\n",
1064
+ " '__lt__',\n",
1065
+ " '__module__',\n",
1066
+ " '__ne__',\n",
1067
+ " '__new__',\n",
1068
+ " '__reduce__',\n",
1069
+ " '__reduce_ex__',\n",
1070
+ " '__repr__',\n",
1071
+ " '__setattr__',\n",
1072
+ " '__sizeof__',\n",
1073
+ " '__slots__',\n",
1074
+ " '__str__',\n",
1075
+ " '__subclasshook__',\n",
1076
+ " '__weakref__',\n",
1077
+ " '_abc_impl',\n",
1078
+ " '_id',\n",
1079
+ " '_skip_init_processing',\n",
1080
+ " '_style',\n",
1081
+ " 'as_example',\n",
1082
+ " 'attach_load_event',\n",
1083
+ " 'base64_to_temp_file_if_needed',\n",
1084
+ " 'change',\n",
1085
+ " 'clear',\n",
1086
+ " 'deserialize',\n",
1087
+ " 'download_temp_copy_if_needed',\n",
1088
+ " 'elem_classes',\n",
1089
+ " 'elem_id',\n",
1090
+ " 'file_count',\n",
1091
+ " 'file_types',\n",
1092
+ " 'get_block_name',\n",
1093
+ " 'get_config',\n",
1094
+ " 'get_expected_parent',\n",
1095
+ " 'get_load_fn_and_initial_value',\n",
1096
+ " 'get_specific_update',\n",
1097
+ " 'hash_base64',\n",
1098
+ " 'hash_file',\n",
1099
+ " 'hash_url',\n",
1100
+ " 'info',\n",
1101
+ " 'interactive',\n",
1102
+ " 'label',\n",
1103
+ " 'load_event',\n",
1104
+ " 'load_event_to_attach',\n",
1105
+ " 'make_temp_copy_if_needed',\n",
1106
+ " 'parent',\n",
1107
+ " 'postprocess',\n",
1108
+ " 'preprocess',\n",
1109
+ " 'render',\n",
1110
+ " 'root',\n",
1111
+ " 'root_url',\n",
1112
+ " 'save_uploaded_file',\n",
1113
+ " 'select',\n",
1114
+ " 'selectable',\n",
1115
+ " 'serialize',\n",
1116
+ " 'set_event_trigger',\n",
1117
+ " 'share_token',\n",
1118
+ " 'show_label',\n",
1119
+ " 'style',\n",
1120
+ " 'temp_files',\n",
1121
+ " 'test_input',\n",
1122
+ " 'type',\n",
1123
+ " 'unrender',\n",
1124
+ " 'update',\n",
1125
+ " 'upload',\n",
1126
+ " 'value',\n",
1127
+ " 'visible']"
1128
  ]
1129
  },
1130
+ "execution_count": 2,
 
 
 
 
 
 
 
1131
  "metadata": {},
1132
  "output_type": "execute_result"
 
 
 
 
 
 
 
 
1133
  }
1134
  ],
1135
  "source": [
1136
+ "dir(output_csv)"
 
 
 
 
 
1137
  ]
1138
  },
1139
  {
 
1162
  }
1163
  ],
1164
  "source": [
1165
+ "filename.split(\"/\")[-1]\n",
1166
+ " eq_lat = float(filename.split(\"_\")[0])\n",
1167
+ " eq_lon = float(filename.split(\"_\")[1])"
 
 
 
 
 
1168
  ]
1169
  }
1170
  ],
 
1184
  "name": "python",
1185
  "nbconvert_exporter": "python",
1186
  "pygments_lexer": "ipython3",
1187
+ "version": "3.11.2"
1188
  },
1189
  "orig_nbformat": 4
1190
  },
app.py CHANGED
@@ -7,18 +7,14 @@ from phasehunter.data_preparation import prepare_waveform
7
  import torch
8
  import io
9
 
10
- from scipy.signal import resample
11
  from scipy.stats import gaussian_kde
 
12
  from bmi_topography import Topography
13
  import earthpy.spatial as es
14
 
15
  import obspy
16
  from obspy.clients.fdsn import Client
17
- from obspy.clients.fdsn.header import (
18
- FDSNNoDataException,
19
- FDSNTimeoutException,
20
- FDSNInternalServerException,
21
- )
22
  from obspy.geodetics.base import locations2degrees
23
  from obspy.taup import TauPyModel
24
  from obspy.taup.helper_classes import SlownessModelError
@@ -35,12 +31,12 @@ from glob import glob
35
  def resample_waveform(waveform, original_freq, target_freq):
36
  """
37
  Resample a waveform from original frequency to target frequency using SciPy's resample function.
38
-
39
  Args:
40
  waveform (numpy.ndarray): The input waveform as a 1D array.
41
  original_freq (float): The original sampling frequency of the waveform.
42
  target_freq (float): The target sampling frequency of the waveform.
43
-
44
  Returns:
45
  resampled_waveform (numpy.ndarray): The resampled waveform as a 1D array.
46
  """
@@ -50,20 +46,19 @@ def resample_waveform(waveform, original_freq, target_freq):
50
  resampled_length = int(waveform.shape[-1] * resampling_ratio)
51
  # Resample the waveform using SciPy's resample function
52
  resampled_waveform = resample(waveform, resampled_length, axis=-1)
53
-
54
  return resampled_waveform
55
 
56
-
57
  def make_prediction(waveform, sampling_rate):
58
  waveform = np.load(waveform)
59
- print("Loaded", waveform.shape)
60
 
61
  if len(waveform.shape) == 1:
62
  waveform = waveform.reshape(1, waveform.shape[0])
63
- print("Reshaped", waveform.shape)
64
  if sampling_rate != 100:
65
  waveform = resample_waveform(waveform, sampling_rate, 100)
66
- print("Resampled", waveform.shape)
67
 
68
  orig_waveform = waveform[:, :6000].copy()
69
  processed_input = prepare_waveform(waveform)
@@ -83,80 +78,53 @@ def mark_phases(waveform, uploaded_file, p_thres, s_thres, sampling_rate):
83
  if uploaded_file is not None:
84
  waveform = uploaded_file.name
85
 
86
- processed_input, p_phase, s_phase, orig_waveform = make_prediction(
87
- waveform, sampling_rate
88
- )
89
 
90
  # Create a plot of the waveform with the phases marked
91
- if sum(processed_input[0][2] == 0): # if input is 1C
92
  fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)
93
 
94
- ax[0].plot(orig_waveform[0], color="black", lw=1)
95
- ax[0].set_ylabel("Norm. Ampl.")
96
 
97
- else: # if input is 3C
98
  fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
99
- ax[0].plot(orig_waveform[0], color="black", lw=1)
100
- ax[1].plot(orig_waveform[1], color="black", lw=1)
101
- ax[2].plot(orig_waveform[2], color="black", lw=1)
 
 
 
 
102
 
103
- ax[0].set_ylabel("Z")
104
- ax[1].set_ylabel("N")
105
- ax[2].set_ylabel("E")
106
 
107
- do_we_have_p = p_phase.std().item() * 60 < p_thres
108
  if do_we_have_p:
109
- p_phase_plot = p_phase * processed_input.shape[-1]
110
  p_kde = gaussian_kde(p_phase_plot)
111
- p_dist_space = np.linspace(min(p_phase_plot) - 10, max(p_phase_plot) + 10, 500)
112
- ax[-1].plot(p_dist_space, p_kde(p_dist_space), color="r")
113
  else:
114
- ax[-1].text(
115
- 0.5,
116
- 0.75,
117
- "No P phase detected",
118
- horizontalalignment="center",
119
- verticalalignment="center",
120
- transform=ax[-1].transAxes,
121
- )
122
-
123
- do_we_have_s = s_phase.std().item() * 60 < s_thres
124
  if do_we_have_s:
125
- s_phase_plot = s_phase * processed_input.shape[-1]
126
  s_kde = gaussian_kde(s_phase_plot)
127
- s_dist_space = np.linspace(min(s_phase_plot) - 10, max(s_phase_plot) + 10, 500)
128
- ax[-1].plot(s_dist_space, s_kde(s_dist_space), color="b")
129
 
130
  for a in ax:
131
- a.axvline(
132
- p_phase.mean() * processed_input.shape[-1],
133
- color="r",
134
- linestyle="--",
135
- label="P",
136
- alpha=do_we_have_p,
137
- )
138
- a.axvline(
139
- s_phase.mean() * processed_input.shape[-1],
140
- color="b",
141
- linestyle="--",
142
- label="S",
143
- alpha=do_we_have_s,
144
- )
145
  else:
146
- ax[-1].text(
147
- 0.5,
148
- 0.25,
149
- "No S phase detected",
150
- horizontalalignment="center",
151
- verticalalignment="center",
152
- transform=ax[-1].transAxes,
153
- )
154
-
155
- ax[-1].set_xlabel("Time, samples")
156
- ax[-1].set_ylabel("Uncert., samples")
157
  ax[-1].legend()
158
 
159
- plt.subplots_adjust(hspace=0.0, wspace=0.0)
160
 
161
  # Convert the plot to an image and return it
162
  fig.canvas.draw()
@@ -164,7 +132,6 @@ def mark_phases(waveform, uploaded_file, p_thres, s_thres, sampling_rate):
164
  plt.close(fig)
165
  return image
166
 
167
-
168
  def bin_distances(distances, bin_size=10):
169
  # Bin the distances into groups of `bin_size` kilometers
170
  binned_distances = {}
@@ -180,10 +147,9 @@ def bin_distances(distances, bin_size=10):
180
  for bin_index in binned_distances:
181
  first_distance, first_distance_index = binned_distances[bin_index]
182
  first_distances.append(first_distance_index)
183
-
184
  return first_distances
185
 
186
-
187
  def variance_coefficient(residuals):
188
  # calculate the variance of the residuals
189
  var = residuals.var()
@@ -191,21 +157,9 @@ def variance_coefficient(residuals):
191
  coeff = 1 - (var / (residuals.max() - residuals.min()))
192
  return coeff
193
 
194
-
195
- def predict_on_section(
196
- client_name,
197
- timestamp,
198
- eq_lat,
199
- eq_lon,
200
- radius_km,
201
- source_depth_km,
202
- velocity_model,
203
- max_waveforms,
204
- conf_thres_P,
205
- conf_thres_S,
206
- ):
207
  distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []
208
-
209
  taup_model = TauPyModel(model=velocity_model)
210
  client = Client(client_name)
211
 
@@ -219,92 +173,60 @@ def predict_on_section(
219
  endtime = starttime + 120
220
 
221
  try:
222
- print("Starting to download inventory")
223
- inv = client.get_stations(
224
- network="*",
225
- station="*",
226
- location="*",
227
- channel="*H*",
228
- starttime=starttime,
229
- endtime=endtime,
230
- minlatitude=(eq_lat - window),
231
- maxlatitude=(eq_lat + window),
232
- minlongitude=(eq_lon - window),
233
- maxlongitude=(eq_lon + window),
234
- level="station",
235
- )
236
- print("Finished downloading inventory")
237
-
238
- except (
239
- IndexError,
240
- FDSNNoDataException,
241
- FDSNTimeoutException,
242
- FDSNInternalServerException,
243
- ):
244
  fig, ax = plt.subplots()
245
- ax.text(0.5, 0.5, "Something is wrong with the data provider, try another")
246
- fig.canvas.draw()
247
  image = np.array(fig.canvas.renderer.buffer_rgba())
248
  plt.close(fig)
249
  return image
250
-
251
  waveforms = []
252
  cached_waveforms = glob("data/cached/*.mseed")
253
 
254
  for network in inv:
255
- if network.code == "SY":
256
  continue
257
  for station in network:
258
  print(f"Processing {network.code}.{station.code}...")
259
- distance = locations2degrees(
260
- eq_lat, eq_lon, station.latitude, station.longitude
261
- )
262
 
263
- arrivals = taup_model.get_travel_times(
264
- source_depth_in_km=source_depth_km,
265
- distance_in_degree=distance,
266
- phase_list=["P", "S"],
267
- )
268
 
269
  if len(arrivals) > 0:
270
 
271
  starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15
272
  endtime = starttime + 60
273
  try:
274
- filename = f"{network.code}_{station.code}_{starttime}"
275
  if f"data/cached/{filename}.mseed" not in cached_waveforms:
276
- print(f"Downloading waveform for {filename}")
277
- waveform = client.get_waveforms(
278
- network=network.code,
279
- station=station.code,
280
- location="*",
281
- channel="*",
282
- starttime=starttime,
283
- endtime=endtime,
284
- )
285
- waveform.write(
286
- f"data/cached/{network.code}_{station.code}_{starttime}.mseed",
287
- format="MSEED",
288
- )
289
- print("Finished downloading and caching waveform")
290
  else:
291
- print("Reading cached waveform")
292
- waveform = obspy.read(
293
- f"data/cached/{network.code}_{station.code}_{starttime}.mseed"
294
- )
295
 
296
- except (
297
- IndexError,
298
- FDSNNoDataException,
299
- FDSNTimeoutException,
300
- FDSNInternalServerException,
301
- ):
302
- print(f"Skipping {network.code}_{station.code}_{starttime}")
303
  continue
304
-
305
  waveform = waveform.select(channel="H[BH][ZNE]")
306
  waveform = waveform.merge(fill_value=0)
307
- waveform = waveform[:3].sort(keys=["channel"], reverse=True)
308
 
309
  len_check = [len(x.data) for x in waveform]
310
  if len(set(len_check)) > 1:
@@ -312,9 +234,7 @@ def predict_on_section(
312
 
313
  if len(waveform) == 3:
314
  try:
315
- waveform = prepare_waveform(
316
- np.stack([x.data for x in waveform])
317
- )
318
 
319
  distances.append(distance)
320
  t0s.append(starttime)
@@ -323,32 +243,32 @@ def predict_on_section(
323
  waveforms.append(waveform)
324
  names.append(f"{network.code}.{station.code}")
325
 
326
- print(
327
- f"Added {network.code}.{station.code} to the list of waveforms"
328
- )
329
 
330
  except:
331
  continue
332
-
 
333
  # If there are no waveforms, return an empty plot
334
  if len(waveforms) == 0:
335
- print("No waveforms found")
336
  fig, ax = plt.subplots()
337
- ax.text(0.5, 0.5, "No waveforms found")
338
- fig.canvas.draw()
339
  image = np.array(fig.canvas.renderer.buffer_rgba())
340
  plt.close(fig)
341
  output_picks = pd.DataFrame()
342
- output_picks.to_csv("data/picks.csv", index=False)
343
- output_csv = "data/picks.csv"
344
  return image, output_picks, output_csv
 
345
 
346
- first_distances = bin_distances(distances, bin_size=10 / 111.2)
347
 
348
  # Edge case when there are way too many waveforms to process
349
- selection_indexes = np.random.choice(
350
- first_distances, np.min([len(first_distances), max_waveforms]), replace=False
351
- )
352
 
353
  waveforms = np.array(waveforms)[selection_indexes]
354
  distances = np.array(distances)[selection_indexes]
@@ -359,7 +279,7 @@ def predict_on_section(
359
 
360
  waveforms = [torch.tensor(waveform) for waveform in waveforms]
361
 
362
- print("Starting to run predictions")
363
  with torch.no_grad():
364
  waveforms_torch = torch.vstack(waveforms)
365
  output = model(waveforms_torch)
@@ -367,183 +287,232 @@ def predict_on_section(
367
  p_phases = output[:, 0]
368
  s_phases = output[:, 1]
369
 
370
- p_phases = p_phases.reshape(len(waveforms), -1)
371
- s_phases = s_phases.reshape(len(waveforms), -1)
372
 
373
- # Max confidence - min variance
374
  p_max_confidence = p_phases.std(axis=-1).min()
375
  s_max_confidence = s_phases.std(axis=-1).min()
376
 
377
  print(f"Starting plotting {len(waveforms)} waveforms")
378
  fig, ax = plt.subplots(ncols=3, figsize=(10, 3))
379
-
380
  # Plot topography
381
- print("Fetching topography")
382
  params = Topography.DEFAULT.copy()
383
  extra_window = 0.5
384
- params["south"] = np.min([st_lats.min(), eq_lat]) - extra_window
385
- params["north"] = np.max([st_lats.max(), eq_lat]) + extra_window
386
- params["west"] = np.min([st_lons.min(), eq_lon]) - extra_window
387
- params["east"] = np.max([st_lons.max(), eq_lon]) + extra_window
388
 
389
  topo_map = Topography(**params)
390
  topo_map.fetch()
391
  topo_map.load()
392
 
393
- print("Plotting topo")
394
  hillshade = es.hillshade(topo_map.da[0], altitude=10)
395
-
396
- topo_map.da.plot(ax=ax[1], cmap="Greys", add_colorbar=False, add_labels=False)
397
- topo_map.da.plot(ax=ax[2], cmap="Greys", add_colorbar=False, add_labels=False)
398
  ax[1].imshow(hillshade, cmap="Greys", alpha=0.5)
399
 
400
- output_picks = pd.DataFrame(
401
- {
402
- "station_name": [],
403
- "st_lat": [],
404
- "st_lon": [],
405
- "starttime": [],
406
- "p_phase, s": [],
407
- "p_uncertainty, s": [],
408
- "s_phase, s": [],
409
- "s_uncertainty, s": [],
410
- "velocity_p, km/s": [],
411
- "velocity_s, km/s": [],
412
- }
413
- )
414
-
415
  for i in range(len(waveforms)):
416
  print(f"Plotting waveform {i+1}/{len(waveforms)}")
417
  current_P = p_phases[i]
418
  current_S = s_phases[i]
419
-
420
- x = [t0s[i] + pd.Timedelta(seconds=k / 100) for k in np.linspace(0, 6000, 6000)]
421
  x = mdates.date2num(x)
422
 
423
  # Normalize confidence for the plot
424
- p_conf = 1 / (current_P.std() / p_max_confidence).item()
425
- s_conf = 1 / (current_S.std() / s_max_confidence).item()
426
 
427
  delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp
428
 
429
- ax[0].plot(
430
- x,
431
- waveforms[i][0, 0] * 10 + distances[i] * 111.2,
432
- color="black",
433
- alpha=0.5,
434
- lw=1,
435
- )
436
-
437
- if (current_P.std().item() * 60 < conf_thres_P) or (
438
- current_S.std().item() * 60 < conf_thres_S
439
- ):
440
- ax[0].scatter(
441
- x[int(current_P.mean() * waveforms[i][0].shape[-1])],
442
- waveforms[i][0, 0].mean() + distances[i] * 111.2,
443
- color="r",
444
- alpha=p_conf,
445
- marker="|",
446
- )
447
- ax[0].scatter(
448
- x[int(current_S.mean() * waveforms[i][0].shape[-1])],
449
- waveforms[i][0, 0].mean() + distances[i] * 111.2,
450
- color="b",
451
- alpha=s_conf,
452
- marker="|",
453
- )
454
 
455
- velocity_p = (distances[i] * 111.2) / (
456
- delta_t + current_P.mean() * 60
457
- ).item()
458
- velocity_s = (distances[i] * 111.2) / (
459
- delta_t + current_S.mean() * 60
460
- ).item()
461
 
462
  # Generate an array from st_lat to eq_lat and from st_lon to eq_lon
463
  x = np.linspace(st_lons[i], eq_lon, 50)
464
  y = np.linspace(st_lats[i], eq_lat, 50)
465
-
466
  # Plot the array
467
- ax[1].scatter(
468
- x, y, c=np.zeros_like(x) + velocity_p, alpha=0.1, vmin=0, vmax=8
469
- )
470
- ax[2].scatter(
471
- x, y, c=np.zeros_like(x) + velocity_s, alpha=0.1, vmin=0, vmax=8
472
- )
473
 
474
  else:
475
  velocity_p = np.nan
476
  velocity_s = np.nan
477
-
478
- ax[0].set_ylabel("Z")
479
- print(
480
- f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}"
481
- )
482
-
483
- output_picks = output_picks.append(
484
- pd.DataFrame(
485
- {
486
- "station_name": [names[i]],
487
- "st_lat": [st_lats[i]],
488
- "st_lon": [st_lons[i]],
489
- "starttime": [str(t0s[i])],
490
- "p_phase, s": [(delta_t + current_P.mean() * 60).item()],
491
- "p_uncertainty, s": [current_P.std().item() * 60],
492
- "s_phase, s": [(delta_t + current_S.mean() * 60).item()],
493
- "s_uncertainty, s": [current_S.std().item() * 60],
494
- "velocity_p, km/s": [velocity_p],
495
- "velocity_s, km/s": [velocity_s],
496
- }
497
- )
498
- )
499
-
500
  # Add legend
501
- ax[0].scatter(None, None, color="r", marker="|", label="P")
502
- ax[0].scatter(None, None, color="b", marker="|", label="S")
503
- ax[0].xaxis.set_major_formatter(mdates.DateFormatter("%H:%M:%S"))
504
  ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))
505
  ax[0].legend()
506
 
507
- print("Plotting stations")
508
- for i in range(1, 3):
509
- ax[i].scatter(st_lons, st_lats, color="b", label="Stations")
510
- ax[i].scatter(eq_lon, eq_lat, color="r", marker="*", label="Earthquake")
511
- ax[i].set_aspect("equal")
512
- ax[i].set_xticklabels(ax[i].get_xticks(), rotation=50)
513
-
514
- fig.subplots_adjust(
515
- bottom=0.1, top=0.9, left=0.1, right=0.8, wspace=0.02, hspace=0.02
516
- )
517
 
 
 
 
518
  cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])
519
- cbar = fig.colorbar(
520
- ax[2].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), cax=cb_ax
521
- )
522
 
523
- cbar.set_label("Velocity (km/s)")
524
- ax[1].set_title("P Velocity")
525
- ax[2].set_title("S Velocity")
526
 
527
  for a in ax:
528
- a.tick_params(axis="both", which="major", labelsize=8)
529
-
530
- plt.subplots_adjust(hspace=0.0, wspace=0.5)
531
- fig.canvas.draw()
532
  image = np.array(fig.canvas.renderer.buffer_rgba())
533
  plt.close(fig)
534
- output_picks.to_csv(
535
- f"data/velocity/{eq_lat}_{eq_lon}_{timestamp}_{len(waveforms)}.csv", index=False
536
- )
537
- output_csv = f"data/velocity/{eq_lat}_{eq_lon}_{timestamp}_{len(waveforms)}.csv"
538
 
 
 
 
539
  return image, output_picks, output_csv
540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541
 
542
  model = torch.jit.load("model.pt")
543
 
544
  with gr.Blocks() as demo:
545
- gr.HTML(
546
- """
547
  <div style="padding: 20px; border-radius: 10px;">
548
  <h1 style="font-size: 30px; text-align: center; margin-bottom: 20px;">PhaseHunter <span style="animation: arrow-anim 10s linear infinite; display: inline-block; transform: rotate(45deg) translateX(-20px);">🏹</span>
549
 
@@ -571,210 +540,177 @@ with gr.Blocks() as demo:
571
  <li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>
572
  </ul>
573
  </div>
574
- """
575
- )
576
-
577
  with gr.Tab("Try on a single station"):
578
- with gr.Row():
579
  # Define the input and output types for Gradio
580
  inputs = gr.Dropdown(
581
- [
582
- "data/sample/sample_0.npy",
583
- "data/sample/sample_1.npy",
584
- "data/sample/sample_2.npy",
585
- ],
586
- label="Sample waveform",
587
  info="Select one of the samples",
588
- value="data/sample/sample_0.npy",
589
  )
590
  with gr.Column(scale=1):
591
- P_thres_inputs = gr.Slider(
592
- minimum=0.01,
593
- maximum=1,
594
- value=0.1,
595
- label="P uncertainty threshold, s",
596
- step=0.01,
597
- info="Acceptable uncertainty for P picks expressed in std() seconds",
598
- interactive=True,
599
- )
600
-
601
- S_thres_inputs = gr.Slider(
602
- minimum=0.01,
603
- maximum=1,
604
- value=0.2,
605
- label="S uncertainty threshold, s",
606
- step=0.01,
607
- info="Acceptable uncertainty for S picks expressed in std() seconds",
608
- interactive=True,
609
- )
610
  with gr.Column(scale=1):
611
  upload = gr.File(label="Or upload your own waveform")
612
- sampling_rate_inputs = gr.Slider(
613
- minimum=10,
614
- maximum=1000,
615
- value=100,
616
- label="Samlping rate, Hz",
617
- step=10,
618
- info="Sampling rate of the waveform",
619
- interactive=True,
620
- )
621
 
622
  button = gr.Button("Predict phases")
623
- outputs = gr.Image(
624
- label="Waveform with Phases Marked", type="numpy", interactive=False
625
- )
626
-
627
- button.click(
628
- mark_phases,
629
- inputs=[
630
- inputs,
631
- upload,
632
- P_thres_inputs,
633
- S_thres_inputs,
634
- sampling_rate_inputs,
635
- ],
636
- outputs=outputs,
637
- )
638
-
639
  with gr.Tab("Select earthquake from catalogue"):
640
 
641
- gr.HTML(
642
- """
643
  <div style="padding: 20px; border-radius: 10px; font-size: 16px;">
644
  <p style="font-weight: bold; font-size: 24px; margin-bottom: 20px;">Using PhaseHunter to Analyze Seismic Waveforms</p>
645
  <p>Select an earthquake from the global earthquake catalogue (e.g. <a href="https://earthquake.usgs.gov/earthquakes/map">USGS</a>) and the app will download the waveform from the FDSN client of your choice. The app will use a velocity model of your choice to select appropriate time windows for each station within a specified radius of the earthquake.</p>
646
  <p>The app will then analyze the waveforms and mark the detected phases on the waveform. Pick data for each waveform is reported in seconds from the start of the waveform.</p>
647
  <p>Velocities are derived from distance and travel time determined by PhaseHunter picks (<span style="font-style: italic;">v = distance/predicted_pick_time</span>). The background of the velocity plot is colored by DEM.</p>
648
  </div>
649
- """
650
- )
651
- with gr.Row():
652
  with gr.Column(scale=2):
653
  client_inputs = gr.Dropdown(
654
- choices=list(URL_MAPPINGS.keys()),
655
- label="FDSN Client",
656
  info="Select one of the available FDSN clients",
657
- value="IRIS",
658
- interactive=True,
659
  )
660
 
661
  velocity_inputs = gr.Dropdown(
662
- choices=[
663
- "1066a",
664
- "1066b",
665
- "ak135",
666
- "ak135f",
667
- "herrin",
668
- "iasp91",
669
- "jb",
670
- "prem",
671
- "pwdk",
672
- ],
673
- label="1D velocity model",
674
  info="Velocity model for station selection",
675
- value="1066a",
676
- interactive=True,
677
  )
678
 
679
  with gr.Column(scale=2):
680
- timestamp_inputs = gr.Textbox(
681
- value="2019-07-04 17:33:49",
682
- placeholder="YYYY-MM-DD HH:MM:SS",
683
- label="Timestamp",
684
- info="Timestamp of the earthquake",
685
- max_lines=1,
686
- interactive=True,
687
- )
688
-
689
- source_depth_inputs = gr.Number(
690
- value=10,
691
  label="Source depth (km)",
692
  info="Depth of the earthquake",
693
- interactive=True,
694
- )
695
-
696
  with gr.Column(scale=2):
697
- eq_lat_inputs = gr.Number(
698
- value=35.766,
699
- label="Latitude",
700
- info="Latitude of the earthquake",
701
- interactive=True,
702
- )
703
-
704
- eq_lon_inputs = gr.Number(
705
- value=-117.605,
706
- label="Longitude",
707
- info="Longitude of the earthquake",
708
- interactive=True,
709
- )
710
-
711
  with gr.Column(scale=2):
712
- radius_inputs = gr.Slider(
713
- minimum=1,
714
- maximum=200,
715
- value=50,
716
- label="Radius (km)",
717
- step=10,
718
- info="""Select the radius around the earthquake to download data from.\n
719
  Note that the larger the radius, the longer the app will take to run.""",
720
- interactive=True,
721
- )
722
-
723
- max_waveforms_inputs = gr.Slider(
724
- minimum=1,
725
- maximum=100,
726
- value=10,
727
- label="Max waveforms per section",
728
- step=1,
729
- info="Maximum number of waveforms to show per section\n (to avoid long prediction times)",
730
- interactive=True,
731
- )
732
  with gr.Column(scale=2):
733
- P_thres_inputs = gr.Slider(
734
- minimum=0.01,
735
- maximum=1,
736
- value=0.1,
737
- label="P uncertainty threshold, s",
738
- step=0.01,
739
- info="Acceptable uncertainty for P picks expressed in std() seconds",
740
- interactive=True,
741
- )
742
- S_thres_inputs = gr.Slider(
743
- minimum=0.01,
744
- maximum=1,
745
- value=0.2,
746
- label="S uncertainty threshold, s",
747
- step=0.01,
748
- info="Acceptable uncertainty for S picks expressed in std() seconds",
749
- interactive=True,
750
- )
751
-
752
  button = gr.Button("Predict phases")
753
- output_image = gr.Image(
754
- label="Waveforms with Phases Marked", type="numpy", interactive=False
755
- )
756
 
757
  with gr.Row():
758
- output_picks = gr.Dataframe(
759
- label="Pick data", type="pandas", interactive=False
760
- )
761
  output_csv = gr.File(label="Output File", file_types=[".csv"])
762
 
763
- button.click(
764
- predict_on_section,
765
- inputs=[
766
- client_inputs,
767
- timestamp_inputs,
768
- eq_lat_inputs,
769
- eq_lon_inputs,
770
- radius_inputs,
771
- source_depth_inputs,
772
- velocity_inputs,
773
- max_waveforms_inputs,
774
- P_thres_inputs,
775
- S_thres_inputs,
776
- ],
777
- outputs=[output_image, output_picks, output_csv],
778
- )
779
-
780
- demo.launch()
 
 
 
 
 
 
 
 
 
 
7
  import torch
8
  import io
9
 
 
10
  from scipy.stats import gaussian_kde
11
+ from scipy.signal import resample
12
  from bmi_topography import Topography
13
  import earthpy.spatial as es
14
 
15
  import obspy
16
  from obspy.clients.fdsn import Client
17
+ from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException
 
 
 
 
18
  from obspy.geodetics.base import locations2degrees
19
  from obspy.taup import TauPyModel
20
  from obspy.taup.helper_classes import SlownessModelError
 
31
  def resample_waveform(waveform, original_freq, target_freq):
32
  """
33
  Resample a waveform from original frequency to target frequency using SciPy's resample function.
34
+
35
  Args:
36
  waveform (numpy.ndarray): The input waveform as a 1D array.
37
  original_freq (float): The original sampling frequency of the waveform.
38
  target_freq (float): The target sampling frequency of the waveform.
39
+
40
  Returns:
41
  resampled_waveform (numpy.ndarray): The resampled waveform as a 1D array.
42
  """
 
46
  resampled_length = int(waveform.shape[-1] * resampling_ratio)
47
  # Resample the waveform using SciPy's resample function
48
  resampled_waveform = resample(waveform, resampled_length, axis=-1)
49
+
50
  return resampled_waveform
51
 
 
52
  def make_prediction(waveform, sampling_rate):
53
  waveform = np.load(waveform)
54
+ print('Loaded', waveform.shape)
55
 
56
  if len(waveform.shape) == 1:
57
  waveform = waveform.reshape(1, waveform.shape[0])
58
+ print('Reshaped', waveform.shape)
59
  if sampling_rate != 100:
60
  waveform = resample_waveform(waveform, sampling_rate, 100)
61
+ print('Resampled', waveform.shape)
62
 
63
  orig_waveform = waveform[:, :6000].copy()
64
  processed_input = prepare_waveform(waveform)
 
78
  if uploaded_file is not None:
79
  waveform = uploaded_file.name
80
 
81
+ processed_input, p_phase, s_phase, orig_waveform = make_prediction(waveform, sampling_rate)
 
 
82
 
83
  # Create a plot of the waveform with the phases marked
84
+ if sum(processed_input[0][2] == 0): #if input is 1C
85
  fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)
86
 
87
+ ax[0].plot(orig_waveform[0], color='black', lw=1)
88
+ ax[0].set_ylabel('Norm. Ampl.')
89
 
90
+ else: #if input is 3C
91
  fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
92
+ ax[0].plot(orig_waveform[0], color='black', lw=1)
93
+ ax[1].plot(orig_waveform[1], color='black', lw=1)
94
+ ax[2].plot(orig_waveform[2], color='black', lw=1)
95
+
96
+ ax[0].set_ylabel('Z')
97
+ ax[1].set_ylabel('N')
98
+ ax[2].set_ylabel('E')
99
 
 
 
 
100
 
101
+ do_we_have_p = (p_phase.std().item()*60 < p_thres)
102
  if do_we_have_p:
103
+ p_phase_plot = p_phase*processed_input.shape[-1]
104
  p_kde = gaussian_kde(p_phase_plot)
105
+ p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )
106
+ ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')
107
  else:
108
+ ax[-1].text(0.5, 0.75, 'No P phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)
109
+
110
+ do_we_have_s = (s_phase.std().item()*60 < s_thres)
 
 
 
 
 
 
 
111
  if do_we_have_s:
112
+ s_phase_plot = s_phase*processed_input.shape[-1]
113
  s_kde = gaussian_kde(s_phase_plot)
114
+ s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )
115
+ ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')
116
 
117
  for a in ax:
118
+ a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P', alpha=do_we_have_p)
119
+ a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S', alpha=do_we_have_s)
 
 
 
 
 
 
 
 
 
 
 
 
120
  else:
121
+ ax[-1].text(0.5, 0.25, 'No S phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)
122
+
123
+ ax[-1].set_xlabel('Time, samples')
124
+ ax[-1].set_ylabel('Uncert., samples')
 
 
 
 
 
 
 
125
  ax[-1].legend()
126
 
127
+ plt.subplots_adjust(hspace=0., wspace=0.)
128
 
129
  # Convert the plot to an image and return it
130
  fig.canvas.draw()
 
132
  plt.close(fig)
133
  return image
134
 
 
135
  def bin_distances(distances, bin_size=10):
136
  # Bin the distances into groups of `bin_size` kilometers
137
  binned_distances = {}
 
147
  for bin_index in binned_distances:
148
  first_distance, first_distance_index = binned_distances[bin_index]
149
  first_distances.append(first_distance_index)
150
+
151
  return first_distances
152
 
 
153
  def variance_coefficient(residuals):
154
  # calculate the variance of the residuals
155
  var = residuals.var()
 
157
  coeff = 1 - (var / (residuals.max() - residuals.min()))
158
  return coeff
159
 
160
+ def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms, conf_thres_P, conf_thres_S):
 
 
 
 
 
 
 
 
 
 
 
 
161
  distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []
162
+
163
  taup_model = TauPyModel(model=velocity_model)
164
  client = Client(client_name)
165
 
 
173
  endtime = starttime + 120
174
 
175
  try:
176
+ print('Starting to download inventory')
177
+ inv = client.get_stations(network="*", station="*", location="*", channel="*H*",
178
+ starttime=starttime, endtime=endtime,
179
+ minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),
180
+ minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window),
181
+ level='station')
182
+ print('Finished downloading inventory')
183
+
184
+ except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  fig, ax = plt.subplots()
186
+ ax.text(0.5,0.5,'Something is wrong with the data provider, try another')
187
+ fig.canvas.draw();
188
  image = np.array(fig.canvas.renderer.buffer_rgba())
189
  plt.close(fig)
190
  return image
191
+
192
  waveforms = []
193
  cached_waveforms = glob("data/cached/*.mseed")
194
 
195
  for network in inv:
196
+ if network.code == 'SY':
197
  continue
198
  for station in network:
199
  print(f"Processing {network.code}.{station.code}...")
200
+ distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)
 
 
201
 
202
+ arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km,
203
+ distance_in_degree=distance,
204
+ phase_list=["P", "S"])
 
 
205
 
206
  if len(arrivals) > 0:
207
 
208
  starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15
209
  endtime = starttime + 60
210
  try:
211
+ filename=f'{network.code}_{station.code}_{starttime}'
212
  if f"data/cached/{filename}.mseed" not in cached_waveforms:
213
+ print(f'Downloading waveform for {filename}')
214
+ waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*",
215
+ starttime=starttime, endtime=endtime)
216
+ waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED")
217
+ print('Finished downloading and caching waveform')
 
 
 
 
 
 
 
 
 
218
  else:
219
+ print('Reading cached waveform')
220
+ waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed")
221
+
 
222
 
223
+ except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
224
+ print(f'Skipping {network.code}_{station.code}_{starttime}')
 
 
 
 
 
225
  continue
226
+
227
  waveform = waveform.select(channel="H[BH][ZNE]")
228
  waveform = waveform.merge(fill_value=0)
229
+ waveform = waveform[:3].sort(keys=['channel'], reverse=True)
230
 
231
  len_check = [len(x.data) for x in waveform]
232
  if len(set(len_check)) > 1:
 
234
 
235
  if len(waveform) == 3:
236
  try:
237
+ waveform = prepare_waveform(np.stack([x.data for x in waveform]))
 
 
238
 
239
  distances.append(distance)
240
  t0s.append(starttime)
 
243
  waveforms.append(waveform)
244
  names.append(f"{network.code}.{station.code}")
245
 
246
+ print(f"Added {network.code}.{station.code} to the list of waveforms")
 
 
247
 
248
  except:
249
  continue
250
+
251
+
252
  # If there are no waveforms, return an empty plot
253
  if len(waveforms) == 0:
254
+ print('No waveforms found')
255
  fig, ax = plt.subplots()
256
+ ax.text(0.5,0.5,'No waveforms found')
257
+ fig.canvas.draw();
258
  image = np.array(fig.canvas.renderer.buffer_rgba())
259
  plt.close(fig)
260
  output_picks = pd.DataFrame()
261
+ output_picks.to_csv('data/picks.csv', index=False)
262
+ output_csv = 'data/picks.csv'
263
  return image, output_picks, output_csv
264
+
265
 
266
+ first_distances = bin_distances(distances, bin_size=10/111.2)
267
 
268
  # Edge case when there are way too many waveforms to process
269
+ selection_indexes = np.random.choice(first_distances,
270
+ np.min([len(first_distances), max_waveforms]),
271
+ replace=False)
272
 
273
  waveforms = np.array(waveforms)[selection_indexes]
274
  distances = np.array(distances)[selection_indexes]
 
279
 
280
  waveforms = [torch.tensor(waveform) for waveform in waveforms]
281
 
282
+ print('Starting to run predictions')
283
  with torch.no_grad():
284
  waveforms_torch = torch.vstack(waveforms)
285
  output = model(waveforms_torch)
 
287
  p_phases = output[:, 0]
288
  s_phases = output[:, 1]
289
 
290
+ p_phases = p_phases.reshape(len(waveforms),-1)
291
+ s_phases = s_phases.reshape(len(waveforms),-1)
292
 
293
+ # Max confidence - min variance
294
  p_max_confidence = p_phases.std(axis=-1).min()
295
  s_max_confidence = s_phases.std(axis=-1).min()
296
 
297
  print(f"Starting plotting {len(waveforms)} waveforms")
298
  fig, ax = plt.subplots(ncols=3, figsize=(10, 3))
299
+
300
  # Plot topography
301
+ print('Fetching topography')
302
  params = Topography.DEFAULT.copy()
303
  extra_window = 0.5
304
+ params["south"] = np.min([st_lats.min(), eq_lat])-extra_window
305
+ params["north"] = np.max([st_lats.max(), eq_lat])+extra_window
306
+ params["west"] = np.min([st_lons.min(), eq_lon])-extra_window
307
+ params["east"] = np.max([st_lons.max(), eq_lon])+extra_window
308
 
309
  topo_map = Topography(**params)
310
  topo_map.fetch()
311
  topo_map.load()
312
 
313
+ print('Plotting topo')
314
  hillshade = es.hillshade(topo_map.da[0], altitude=10)
315
+
316
+ topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)
317
+ topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)
318
  ax[1].imshow(hillshade, cmap="Greys", alpha=0.5)
319
 
320
+ output_picks = pd.DataFrame({'station_name' : [],
321
+ 'st_lat' : [], 'st_lon' : [],
322
+ 'starttime' : [],
323
+ 'p_phase, s' : [], 'p_uncertainty, s' : [],
324
+ 's_phase, s' : [], 's_uncertainty, s' : [],
325
+ 'velocity_p, km/s' : [], 'velocity_s, km/s' : []})
326
+
 
 
 
 
 
 
 
 
327
  for i in range(len(waveforms)):
328
  print(f"Plotting waveform {i+1}/{len(waveforms)}")
329
  current_P = p_phases[i]
330
  current_S = s_phases[i]
331
+
332
+ x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]
333
  x = mdates.date2num(x)
334
 
335
  # Normalize confidence for the plot
336
+ p_conf = 1/(current_P.std()/p_max_confidence).item()
337
+ s_conf = 1/(current_S.std()/s_max_confidence).item()
338
 
339
  delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp
340
 
341
+ ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
 
343
+ if (current_P.std().item()*60 < conf_thres_P) or (current_S.std().item()*60 < conf_thres_S):
344
+ ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')
345
+ ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')
346
+
347
+ velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()
348
+ velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()
349
 
350
  # Generate an array from st_lat to eq_lat and from st_lon to eq_lon
351
  x = np.linspace(st_lons[i], eq_lon, 50)
352
  y = np.linspace(st_lats[i], eq_lat, 50)
353
+
354
  # Plot the array
355
+ ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.1, vmin=0, vmax=8)
356
+ ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.1, vmin=0, vmax=8)
 
 
 
 
357
 
358
  else:
359
  velocity_p = np.nan
360
  velocity_s = np.nan
361
+
362
+ ax[0].set_ylabel('Z')
363
+ print(f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}")
364
+
365
+ output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]],
366
+ 'st_lat' : [st_lats[i]], 'st_lon' : [st_lons[i]],
367
+ 'starttime' : [str(t0s[i])],
368
+ 'p_phase, s' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty, s' : [current_P.std().item()*60],
369
+ 's_phase, s' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty, s' : [current_S.std().item()*60],
370
+ 'velocity_p, km/s' : [velocity_p], 'velocity_s, km/s' : [velocity_s]}))
371
+
372
+
 
 
 
 
 
 
 
 
 
 
 
373
  # Add legend
374
+ ax[0].scatter(None, None, color='r', marker='|', label='P')
375
+ ax[0].scatter(None, None, color='b', marker='|', label='S')
376
+ ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
377
  ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))
378
  ax[0].legend()
379
 
380
+ print('Plotting stations')
381
+ for i in range(1,3):
382
+ ax[i].scatter(st_lons, st_lats, color='b', label='Stations')
383
+ ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')
384
+ ax[i].set_aspect('equal')
385
+ ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50)
 
 
 
 
386
 
387
+ fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,
388
+ wspace=0.02, hspace=0.02)
389
+
390
  cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])
391
+ cbar = fig.colorbar(ax[2].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), cax=cb_ax)
 
 
392
 
393
+ cbar.set_label('Velocity (km/s)')
394
+ ax[1].set_title('P Velocity')
395
+ ax[2].set_title('S Velocity')
396
 
397
  for a in ax:
398
+ a.tick_params(axis='both', which='major', labelsize=8)
399
+
400
+ plt.subplots_adjust(hspace=0., wspace=0.5)
401
+ fig.canvas.draw();
402
  image = np.array(fig.canvas.renderer.buffer_rgba())
403
  plt.close(fig)
 
 
 
 
404
 
405
+ output_csv = f'data/velocity/{eq_lat}_{eq_lon}_{source_depth_km}_{timestamp}_{len(waveforms)}.csv'
406
+ output_picks.to_csv(output_csv, index=False)
407
+
408
  return image, output_picks, output_csv
409
 
410
+ import numpy as np
411
+ from matplotlib import colors, cm
412
+
413
+ # Function to find the closest index for a given value in an array
414
+ def find_closest_index(array, value):
415
+ return np.argmin(np.abs(array - value))
416
+
417
+ def compute_velocity_model(azimuth, elevation):
418
+ filename = list(output_csv.temp_files)[0]
419
+
420
+ df = pd.read_csv(filename)
421
+ print(df)
422
+ filename = filename.split('/')[-1]
423
+
424
+ # Current EQ location
425
+ eq_lat = float(filename.split("_")[0])
426
+ eq_lon = float(filename.split("_")[1])
427
+ eq_depth = float(filename.split("_")[2])
428
+
429
+ # Define the region of interest (latitude, longitude, and depth ranges)
430
+ lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat]))
431
+ lon_range = (np.min([df.st_lon.min(), eq_lon]), np.max([df.st_lon.max(), eq_lon]))
432
+ depth_range = (0, 50)
433
+
434
+ # Define the number of nodes in each dimension
435
+ n_lat = 10
436
+ n_lon = 10
437
+ n_depth = 10
438
+ num_points = 100
439
+
440
+ # Create the grid
441
+ lat_values = np.linspace(lat_range[0], lat_range[1], n_lat)
442
+ lon_values = np.linspace(lon_range[0], lon_range[1], n_lon)
443
+ depth_values = np.linspace(depth_range[0], depth_range[1], n_depth)
444
+
445
+ # Initialize the velocity model with constant values
446
+ initial_velocity = 0 # km/s, this can be P-wave or S-wave velocity
447
+ velocity_model = np.full((n_lat, n_lon, n_depth), initial_velocity, dtype=float)
448
+
449
+ # Loop through the stations and update the velocity model
450
+ for i in range(len(df)):
451
+ if ~np.isnan(df['velocity_p, km/s'].iloc[i]):
452
+ # Interpolate coordinates along the great circle path between the earthquake and the station
453
+ lon_deg = np.linspace(df.st_lon.iloc[i], eq_lon, num_points)
454
+ lat_deg = np.linspace(df.st_lat.iloc[i], eq_lat, num_points)
455
+ depth_interpolated = np.interp(np.linspace(0, 1, num_points), [0, 1], [eq_depth, 0])
456
+
457
+ # Loop through the interpolated coordinates and update the grid cells with the average P-wave velocity
458
+ for lat, lon, depth in zip(lat_deg, lon_deg, depth_interpolated):
459
+ lat_index = find_closest_index(lat_values, lat)
460
+ lon_index = find_closest_index(lon_values, lon)
461
+ depth_index = find_closest_index(depth_values, depth)
462
+
463
+ if velocity_model[lat_index, lon_index, depth_index] == initial_velocity:
464
+ velocity_model[lat_index, lon_index, depth_index] = df['velocity_p, km/s'].iloc[i]
465
+ else:
466
+ velocity_model[lat_index, lon_index, depth_index] = (velocity_model[lat_index, lon_index, depth_index] +
467
+ df['velocity_p, km/s'].iloc[i]) / 2
468
+
469
+ # Create the figure and axis
470
+ fig = plt.figure(figsize=(8, 8))
471
+ ax = fig.add_subplot(111, projection='3d')
472
+
473
+ # Set the plot limits
474
+ ax.set_xlim3d(lat_range[0], lat_range[1])
475
+ ax.set_ylim3d(lon_range[0], lon_range[1])
476
+ ax.set_zlim3d(depth_range[1], depth_range[0])
477
+
478
+ ax.set_xlabel('Latitude')
479
+ ax.set_ylabel('Longitude')
480
+ ax.set_zlabel('Depth (km)')
481
+ ax.set_title('Velocity Model')
482
+
483
+ # Create the meshgrid
484
+ x, y, z = np.meshgrid(
485
+ np.linspace(lat_range[0], lat_range[1], velocity_model.shape[0]+1),
486
+ np.linspace(lon_range[0], lon_range[1], velocity_model.shape[1]+1),
487
+ np.linspace(depth_range[0], depth_range[1], velocity_model.shape[2]+1),
488
+ indexing='ij'
489
+ )
490
+
491
+ # Create the color array
492
+ norm = plt.Normalize(vmin=velocity_model.min(), vmax=velocity_model.max())
493
+ colors = plt.cm.plasma(norm(velocity_model))
494
+
495
+ # Plot the voxels
496
+ ax.voxels(x, y, z, velocity_model > 0, facecolors=colors, alpha=0.5, edgecolor='k')
497
+
498
+ # Set the view angle
499
+ ax.view_init(elev=elevation, azim=azimuth)
500
+
501
+ m = cm.ScalarMappable(cmap=plt.cm.plasma, norm=norm)
502
+ m.set_array([])
503
+ plt.colorbar(m)
504
+
505
+ # Show the plot
506
+ fig.canvas.draw();
507
+ image = np.array(fig.canvas.renderer.buffer_rgba())
508
+ plt.close(fig)
509
+
510
+ return image
511
 
512
  model = torch.jit.load("model.pt")
513
 
514
  with gr.Blocks() as demo:
515
+ gr.HTML("""
 
516
  <div style="padding: 20px; border-radius: 10px;">
517
  <h1 style="font-size: 30px; text-align: center; margin-bottom: 20px;">PhaseHunter <span style="animation: arrow-anim 10s linear infinite; display: inline-block; transform: rotate(45deg) translateX(-20px);">🏹</span>
518
 
 
540
  <li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>
541
  </ul>
542
  </div>
543
+ """)
 
 
544
  with gr.Tab("Try on a single station"):
545
+ with gr.Row():
546
  # Define the input and output types for Gradio
547
  inputs = gr.Dropdown(
548
+ ["data/sample/sample_0.npy",
549
+ "data/sample/sample_1.npy",
550
+ "data/sample/sample_2.npy"],
551
+ label="Sample waveform",
 
 
552
  info="Select one of the samples",
553
+ value = "data/sample/sample_0.npy"
554
  )
555
  with gr.Column(scale=1):
556
+ P_thres_inputs = gr.Slider(minimum=0.01,
557
+ maximum=1,
558
+ value=0.1,
559
+ label="P uncertainty threshold, s",
560
+ step=0.01,
561
+ info="Acceptable uncertainty for P picks expressed in std() seconds",
562
+ interactive=True,
563
+ )
564
+
565
+ S_thres_inputs = gr.Slider(minimum=0.01,
566
+ maximum=1,
567
+ value=0.2,
568
+ label="S uncertainty threshold, s",
569
+ step=0.01,
570
+ info="Acceptable uncertainty for S picks expressed in std() seconds",
571
+ interactive=True,
572
+ )
 
 
573
  with gr.Column(scale=1):
574
  upload = gr.File(label="Or upload your own waveform")
575
+ sampling_rate_inputs = gr.Slider(minimum=10,
576
+ maximum=1000,
577
+ value=100,
578
+ label="Samlping rate, Hz",
579
+ step=10,
580
+ info="Sampling rate of the waveform",
581
+ interactive=True,
582
+ )
 
583
 
584
  button = gr.Button("Predict phases")
585
+ outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)
586
+
587
+ button.click(mark_phases, inputs=[inputs, upload,
588
+ P_thres_inputs, S_thres_inputs,
589
+ sampling_rate_inputs],
590
+ outputs=outputs)
 
 
 
 
 
 
 
 
 
 
591
  with gr.Tab("Select earthquake from catalogue"):
592
 
593
+ gr.HTML("""
 
594
  <div style="padding: 20px; border-radius: 10px; font-size: 16px;">
595
  <p style="font-weight: bold; font-size: 24px; margin-bottom: 20px;">Using PhaseHunter to Analyze Seismic Waveforms</p>
596
  <p>Select an earthquake from the global earthquake catalogue (e.g. <a href="https://earthquake.usgs.gov/earthquakes/map">USGS</a>) and the app will download the waveform from the FDSN client of your choice. The app will use a velocity model of your choice to select appropriate time windows for each station within a specified radius of the earthquake.</p>
597
  <p>The app will then analyze the waveforms and mark the detected phases on the waveform. Pick data for each waveform is reported in seconds from the start of the waveform.</p>
598
  <p>Velocities are derived from distance and travel time determined by PhaseHunter picks (<span style="font-style: italic;">v = distance/predicted_pick_time</span>). The background of the velocity plot is colored by DEM.</p>
599
  </div>
600
+ """)
601
+ with gr.Row():
 
602
  with gr.Column(scale=2):
603
  client_inputs = gr.Dropdown(
604
+ choices = list(URL_MAPPINGS.keys()),
605
+ label="FDSN Client",
606
  info="Select one of the available FDSN clients",
607
+ value = "IRIS",
608
+ interactive=True
609
  )
610
 
611
  velocity_inputs = gr.Dropdown(
612
+ choices = ['1066a', '1066b', 'ak135',
613
+ 'ak135f', 'herrin', 'iasp91',
614
+ 'jb', 'prem', 'pwdk'],
615
+ label="1D velocity model",
 
 
 
 
 
 
 
 
616
  info="Velocity model for station selection",
617
+ value = "1066a",
618
+ interactive=True
619
  )
620
 
621
  with gr.Column(scale=2):
622
+ timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',
623
+ placeholder='YYYY-MM-DD HH:MM:SS',
624
+ label="Timestamp",
625
+ info="Timestamp of the earthquake",
626
+ max_lines=1,
627
+ interactive=True)
628
+
629
+ source_depth_inputs = gr.Number(value=10,
 
 
 
630
  label="Source depth (km)",
631
  info="Depth of the earthquake",
632
+ interactive=True)
633
+
 
634
  with gr.Column(scale=2):
635
+ eq_lat_inputs = gr.Number(value=35.766,
636
+ label="Latitude",
637
+ info="Latitude of the earthquake",
638
+ interactive=True)
639
+
640
+ eq_lon_inputs = gr.Number(value=-117.605,
641
+ label="Longitude",
642
+ info="Longitude of the earthquake",
643
+ interactive=True)
644
+
 
 
 
 
645
  with gr.Column(scale=2):
646
+ radius_inputs = gr.Slider(minimum=1,
647
+ maximum=200,
648
+ value=50,
649
+ label="Radius (km)",
650
+ step=10,
651
+ info="""Select the radius around the earthquake to download data from.\n
 
652
  Note that the larger the radius, the longer the app will take to run.""",
653
+ interactive=True)
654
+
655
+ max_waveforms_inputs = gr.Slider(minimum=1,
656
+ maximum=100,
657
+ value=10,
658
+ label="Max waveforms per section",
659
+ step=1,
660
+ info="Maximum number of waveforms to show per section\n (to avoid long prediction times)",
661
+ interactive=True,
662
+ )
 
 
663
  with gr.Column(scale=2):
664
+ P_thres_inputs = gr.Slider(minimum=0.01,
665
+ maximum=1,
666
+ value=0.1,
667
+ label="P uncertainty threshold, s",
668
+ step=0.01,
669
+ info="Acceptable uncertainty for P picks expressed in std() seconds",
670
+ interactive=True,
671
+ )
672
+ S_thres_inputs = gr.Slider(minimum=0.01,
673
+ maximum=1,
674
+ value=0.2,
675
+ label="S uncertainty threshold, s",
676
+ step=0.01,
677
+ info="Acceptable uncertainty for S picks expressed in std() seconds",
678
+ interactive=True,
679
+ )
680
+
 
 
681
  button = gr.Button("Predict phases")
682
+ output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)
 
 
683
 
684
  with gr.Row():
685
+ output_picks = gr.Dataframe(label='Pick data',
686
+ type='pandas',
687
+ interactive=False)
688
  output_csv = gr.File(label="Output File", file_types=[".csv"])
689
 
690
+ button.click(predict_on_section,
691
+ inputs=[client_inputs, timestamp_inputs,
692
+ eq_lat_inputs, eq_lon_inputs,
693
+ radius_inputs, source_depth_inputs,
694
+ velocity_inputs, max_waveforms_inputs,
695
+ P_thres_inputs, S_thres_inputs],
696
+ outputs=[output_image, output_picks, output_csv])
697
+
698
+ with gr.Row():
699
+ with gr.Column(scale=2):
700
+ inputs_vel_model = [
701
+ ## FIX FILE NAME ISSUE
702
+ gr.Slider(minimum=-180, maximum=180, value=0, step=5, label="Azimuth", interactive=True),
703
+ gr.Slider(minimum=-90, maximum=90, value=30, step=5, label="Elevation", interactive=True)
704
+ ]
705
+ button = gr.Button("Look at 3D Velocities")
706
+ outputs_vel_model = gr.Image(label="3D Velocity Model")
707
+
708
+ button.click(compute_velocity_model,
709
+ inputs=inputs_vel_model,
710
+ outputs=outputs_vel_model)
711
+
712
+
713
+
714
+
715
+
716
+ demo.launch()
data/.DS_Store CHANGED
Binary files a/data/.DS_Store and b/data/.DS_Store differ
 
data/velocity/35.766_-117.605_10.0_2019-07-04 17:33:49_3.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ station_name,st_lat,st_lon,starttime,"p_phase, s","p_uncertainty, s","s_phase, s","s_uncertainty, s","velocity_p, km/s","velocity_s, km/s"
2
+ CI.JRC2,35.98249,-117.80885,2019-07-04T17:33:39.947494Z,7.320212364196777,0.020417090272530913,13.38510799407959,0.028438671142794192,4.13660431013202,2.2622770044299756
3
+ CI.SRT,35.69235,-117.75051,2019-07-04T17:33:38.029990Z,4.53201961517334,0.01748959010001272,9.215676307678223,0.019567650742828846,3.4155476453388767,1.67967367867923
4
+ CI.WMF,36.11758,-117.85486,2019-07-04T17:33:41.867962Z,9.504384994506836,0.015920251607894897,17.03156852722168,0.04673808580264449,4.745724852828504,2.6483289549749593
data/velocity/35.766_-117.605_2019-07-04 17:33:49_3.csv CHANGED
@@ -1,4 +1,4 @@
1
  station_name,st_lat,st_lon,starttime,"p_phase, s","p_uncertainty, s","s_phase, s","s_uncertainty, s","velocity_p, km/s","velocity_s, km/s"
2
- CI.SRT,35.69235,-117.75051,2019-07-04T17:33:38.029990Z,4.52931022644043,0.014338254695758224,9.210612297058105,0.013868825335521251,3.417590792273917,1.6805971661817796
3
- CI.JRC2,35.98249,-117.80885,2019-07-04T17:33:39.947494Z,7.320904731750488,0.018777401419356465,13.390795707702637,0.037158007035031915,4.136213094741051,2.261316106809097
4
- CI.WMF,36.11758,-117.85486,2019-07-04T17:33:41.867962Z,9.504384994506836,0.01592034415807575,17.031570434570312,0.04673818708397448,4.745724852828504,2.6483286583912338
 
1
  station_name,st_lat,st_lon,starttime,"p_phase, s","p_uncertainty, s","s_phase, s","s_uncertainty, s","velocity_p, km/s","velocity_s, km/s"
2
+ CI.WMF,36.11758,-117.85486,2019-07-04T17:33:41.867962Z,9.503650665283203,0.016685163136571646,17.022592544555664,0.04997979383915663,4.746091546067712,2.649725414106055
3
+ CI.SRT,35.69235,-117.75051,2019-07-04T17:33:38.029990Z,4.53201961517334,0.01748959010001272,9.215676307678223,0.019567650742828846,3.4155476453388767,1.67967367867923
4
+ CI.JRC2,35.98249,-117.80885,2019-07-04T17:33:39.947494Z,7.3213396072387695,0.014792646397836506,13.395279884338379,0.02523316943552345,4.135967410510336,2.2605591132307814
data/velocity/current_vel_model.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ station_name,st_lat,st_lon,starttime,"p_phase, s","p_uncertainty, s","s_phase, s","s_uncertainty, s","velocity_p, km/s","velocity_s, km/s"
2
+ CI.WMF,36.11758,-117.85486,2019-07-04T17:33:41.867962Z,9.503650665283203,0.016685163136571646,17.022592544555664,0.04997979383915663,4.746091546067712,2.649725414106055
3
+ CI.SRT,35.69235,-117.75051,2019-07-04T17:33:38.029990Z,4.53201961517334,0.01748959010001272,9.215676307678223,0.019567650742828846,3.4155476453388767,1.67967367867923
4
+ CI.JRC2,35.98249,-117.80885,2019-07-04T17:33:39.947494Z,7.3213396072387695,0.014792646397836506,13.395279884338379,0.02523316943552345,4.135967410510336,2.2605591132307814
phasehunter/__pycache__/data_preparation.cpython-311.pyc ADDED
Binary file (9.14 kB). View file