|
import gradio as gr |
|
import os, torch |
|
from datasets import load_dataset |
|
from huggingface_hub import HfApi, login |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline |
|
qTrainingArguments |
|
|
|
hf_profile = "bstraehle" |
|
|
|
action_1 = "Fine-tune pre-trained model" |
|
action_2 = "Prompt fine-tuned model" |
|
|
|
system_prompt = "You are a text to SQL query translator. Given a question in English, generate a SQL query based on the provided SCHEMA. Do not generate any additional text. SCHEMA: {schema}" |
|
user_prompt = "What is the total trade value and average price for each trader and stock in the trade_history table?" |
|
schema = "CREATE TABLE trade_history (id INT, trader_id INT, stock VARCHAR(255), price DECIMAL(5,2), quantity INT, trade_time TIMESTAMP);" |
|
|
|
base_model_id = "bstraehle/Meta-Llama-3.1-8B-Instruct-text-to-sql" |
|
dataset = "gretelai/synthetic_text_to_sql" |
|
|
|
def process(action, base_model_id, dataset, system_prompt, user_prompt, schema): |
|
|
|
if action == action_1: |
|
result = fine_tune_model(base_model_id, dataset) |
|
elif action == action_2: |
|
fine_tuned_model_id = replace_hf_profile(base_model_id) |
|
result = prompt_model(fine_tuned_model_id, system_prompt, user_prompt, schema) |
|
return result |
|
|
|
def fine_tune_model(base_model_id, dataset): |
|
|
|
|
|
|
|
|
|
dataset = load_dataset("gretelai/synthetic_text_to_sql") |
|
|
|
|
|
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") |
|
print(model) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
if not tokenizer.pad_token: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
def preprocess(examples): |
|
model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True) |
|
return model_inputs |
|
|
|
dataset = dataset.map(preprocess, batched=True) |
|
|
|
|
|
train_dataset = dataset["train"].shuffle(seed=42).select(range(1000)) |
|
val_dataset = dataset["test"].shuffle(seed=42).select(range(100)) |
|
|
|
|
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir="./results", |
|
num_train_epochs=1, |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=64, |
|
warmup_steps=500, |
|
weight_decay=0.01, |
|
logging_dir="./logs", |
|
save_total_limit=2, |
|
save_steps=500, |
|
eval_steps=500, |
|
metric_for_best_model="accuracy", |
|
greater_is_better=True, |
|
save_on_each_node=True, |
|
load_best_model_at_end=True, |
|
eval_strategy="steps", |
|
push_to_hub=True, |
|
) |
|
|
|
|
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=val_dataset, |
|
compute_metrics=lambda pred: {"accuracy": torch.sum(pred.label_ids == pred.predictions.argmax(-1))}, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model("./fine_tuned_model") |
|
|
|
|
|
repo = Repository( |
|
local_dir="./fine_tuned_model", |
|
repo_type="model", |
|
repo_id="bstraehle/Meta-Llama-3.1-8B-Instruct-text-to-sql", |
|
) |
|
|
|
|
|
repo.login(token=os.environ["HF_TOKEN"]) |
|
|
|
|
|
repo.push_to_hub(commit_message="Initial commit") |
|
|
|
def prompt_model(model_id, system_prompt, user_prompt, schema): |
|
pipe = pipeline("text-generation", |
|
model=model_id, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device_map="auto", |
|
max_new_tokens=1000) |
|
messages = [ |
|
{"role": "system", "content": system_prompt.format(schema=schema)}, |
|
{"role": "user", "content": user_prompt}, |
|
{"role": "assistant", "content": ""} |
|
] |
|
output = pipe(messages) |
|
result = output[0]["generated_text"][-1]["content"] |
|
print(result) |
|
return result |
|
|
|
def download_model(base_model_id): |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_id) |
|
model = AutoModelForCausalLM.from_pretrained(base_model_id) |
|
model.save_pretrained(base_model_id) |
|
return tokenizer |
|
|
|
def upload_model(base_model_id, tokenizer): |
|
fine_tuned_model_id = replace_hf_profile(base_model_id) |
|
login(token=os.environ["HF_TOKEN"]) |
|
api = HfApi() |
|
|
|
api.create_repo(repo_id=fine_tuned_model_id) |
|
api.upload_folder( |
|
folder_path=base_model_id, |
|
repo_id=fine_tuned_model_id |
|
) |
|
tokenizer.push_to_hub(fine_tuned_model_id) |
|
return fine_tuned_model_id |
|
|
|
def replace_hf_profile(base_model_id): |
|
model_id = base_model_id[base_model_id.rfind('/')+1:] |
|
return f"{hf_profile}/{model_id}" |
|
|
|
demo = gr.Interface(fn=process, |
|
inputs=[gr.Radio([action_1, action_2], label = "Action", value = action_1), |
|
gr.Textbox(label = "Base Model ID", value = base_model_id, lines = 1), |
|
gr.Textbox(label = "Dataset", value = dataset, lines = 1), |
|
gr.Textbox(label = "System Prompt", value = system_prompt, lines = 2), |
|
gr.Textbox(label = "User Prompt", value = user_prompt, lines = 2), |
|
gr.Textbox(label = "Schema", value = schema, lines = 2)], |
|
outputs=[gr.Textbox(label = "Completion", value = os.environ["OUTPUT"])]) |
|
demo.launch() |