sft / app.py
bstraehle's picture
Update app.py
9cb6b16 verified
raw
history blame
5.98 kB
import gradio as gr
import os, torch
from datasets import load_dataset
from huggingface_hub import HfApi, login
from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline
qTrainingArguments
hf_profile = "bstraehle"
action_1 = "Fine-tune pre-trained model"
action_2 = "Prompt fine-tuned model"
system_prompt = "You are a text to SQL query translator. Given a question in English, generate a SQL query based on the provided SCHEMA. Do not generate any additional text. SCHEMA: {schema}"
user_prompt = "What is the total trade value and average price for each trader and stock in the trade_history table?"
schema = "CREATE TABLE trade_history (id INT, trader_id INT, stock VARCHAR(255), price DECIMAL(5,2), quantity INT, trade_time TIMESTAMP);"
base_model_id = "bstraehle/Meta-Llama-3.1-8B-Instruct-text-to-sql"
dataset = "gretelai/synthetic_text_to_sql"
def process(action, base_model_id, dataset, system_prompt, user_prompt, schema):
#raise gr.Error("Please clone and bring your own credentials.")
if action == action_1:
result = fine_tune_model(base_model_id, dataset)
elif action == action_2:
fine_tuned_model_id = replace_hf_profile(base_model_id)
result = prompt_model(fine_tuned_model_id, system_prompt, user_prompt, schema)
return result
def fine_tune_model(base_model_id, dataset):
# tokenizer = download_model(base_model_id)
# upload_model(base_model_id, tokenizer)
# Load the dataset
dataset = load_dataset("gretelai/synthetic_text_to_sql")
# Load pre-trained model and tokenizer
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
print(model)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
# Preprocess the dataset
def preprocess(examples):
model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True)
return model_inputs
dataset = dataset.map(preprocess, batched=True)
# Split dataset to training and validation sets
train_dataset = dataset["train"].shuffle(seed=42).select(range(1000)) # Adjust the range as needed
val_dataset = dataset["test"].shuffle(seed=42).select(range(100)) # Adjust the range as needed
# Set training arguments
training_args = Seq2SeqTrainingArguments(
output_dir="./results",
num_train_epochs=1, # Adjust as needed
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
save_total_limit=2,
save_steps=500,
eval_steps=500,
metric_for_best_model="accuracy",
greater_is_better=True,
save_on_each_node=True,
load_best_model_at_end=True,
eval_strategy="steps",
push_to_hub=True,
)
# Create Trainer instance
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=lambda pred: {"accuracy": torch.sum(pred.label_ids == pred.predictions.argmax(-1))},
)
# Train the model
trainer.train()
# Save the trained model
trainer.save_model("./fine_tuned_model")
# Create a repository object
repo = Repository(
local_dir="./fine_tuned_model",
repo_type="model",
repo_id="bstraehle/Meta-Llama-3.1-8B-Instruct-text-to-sql",
)
# Login to the Hugging Face hub
repo.login(token=os.environ["HF_TOKEN"])
# Push the model to the hub
repo.push_to_hub(commit_message="Initial commit")
def prompt_model(model_id, system_prompt, user_prompt, schema):
pipe = pipeline("text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
max_new_tokens=1000)
messages = [
{"role": "system", "content": system_prompt.format(schema=schema)},
{"role": "user", "content": user_prompt},
{"role": "assistant", "content": ""}
]
output = pipe(messages)
result = output[0]["generated_text"][-1]["content"]
print(result)
return result
def download_model(base_model_id):
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
model = AutoModelForCausalLM.from_pretrained(base_model_id)
model.save_pretrained(base_model_id)
return tokenizer
def upload_model(base_model_id, tokenizer):
fine_tuned_model_id = replace_hf_profile(base_model_id)
login(token=os.environ["HF_TOKEN"])
api = HfApi()
#api.delete_repo(repo_id=fine_tuned_model_id, repo_type="model")
api.create_repo(repo_id=fine_tuned_model_id)
api.upload_folder(
folder_path=base_model_id,
repo_id=fine_tuned_model_id
)
tokenizer.push_to_hub(fine_tuned_model_id)
return fine_tuned_model_id
def replace_hf_profile(base_model_id):
model_id = base_model_id[base_model_id.rfind('/')+1:]
return f"{hf_profile}/{model_id}"
demo = gr.Interface(fn=process,
inputs=[gr.Radio([action_1, action_2], label = "Action", value = action_1),
gr.Textbox(label = "Base Model ID", value = base_model_id, lines = 1),
gr.Textbox(label = "Dataset", value = dataset, lines = 1),
gr.Textbox(label = "System Prompt", value = system_prompt, lines = 2),
gr.Textbox(label = "User Prompt", value = user_prompt, lines = 2),
gr.Textbox(label = "Schema", value = schema, lines = 2)],
outputs=[gr.Textbox(label = "Completion", value = os.environ["OUTPUT"])])
demo.launch()