import gradio as gr import os, torch from datasets import load_dataset from huggingface_hub import HfApi, login from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline qTrainingArguments hf_profile = "bstraehle" action_1 = "Fine-tune pre-trained model" action_2 = "Prompt fine-tuned model" system_prompt = "You are a text to SQL query translator. Given a question in English, generate a SQL query based on the provided SCHEMA. Do not generate any additional text. SCHEMA: {schema}" user_prompt = "What is the total trade value and average price for each trader and stock in the trade_history table?" schema = "CREATE TABLE trade_history (id INT, trader_id INT, stock VARCHAR(255), price DECIMAL(5,2), quantity INT, trade_time TIMESTAMP);" base_model_id = "bstraehle/Meta-Llama-3.1-8B-Instruct-text-to-sql" dataset = "gretelai/synthetic_text_to_sql" def process(action, base_model_id, dataset, system_prompt, user_prompt, schema): #raise gr.Error("Please clone and bring your own credentials.") if action == action_1: result = fine_tune_model(base_model_id, dataset) elif action == action_2: fine_tuned_model_id = replace_hf_profile(base_model_id) result = prompt_model(fine_tuned_model_id, system_prompt, user_prompt, schema) return result def fine_tune_model(base_model_id, dataset): # tokenizer = download_model(base_model_id) # upload_model(base_model_id, tokenizer) # Load the dataset dataset = load_dataset("gretelai/synthetic_text_to_sql") # Load pre-trained model and tokenizer model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") print(model) tokenizer = AutoTokenizer.from_pretrained(model_name) if not tokenizer.pad_token: tokenizer.pad_token = tokenizer.eos_token # Preprocess the dataset def preprocess(examples): model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True) return model_inputs dataset = dataset.map(preprocess, batched=True) # Split dataset to training and validation sets train_dataset = dataset["train"].shuffle(seed=42).select(range(1000)) # Adjust the range as needed val_dataset = dataset["test"].shuffle(seed=42).select(range(100)) # Adjust the range as needed # Set training arguments training_args = Seq2SeqTrainingArguments( output_dir="./results", num_train_epochs=1, # Adjust as needed per_device_train_batch_size=16, per_device_eval_batch_size=64, warmup_steps=500, weight_decay=0.01, logging_dir="./logs", save_total_limit=2, save_steps=500, eval_steps=500, metric_for_best_model="accuracy", greater_is_better=True, save_on_each_node=True, load_best_model_at_end=True, eval_strategy="steps", push_to_hub=True, ) # Create Trainer instance trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, compute_metrics=lambda pred: {"accuracy": torch.sum(pred.label_ids == pred.predictions.argmax(-1))}, ) # Train the model trainer.train() # Save the trained model trainer.save_model("./fine_tuned_model") # Create a repository object repo = Repository( local_dir="./fine_tuned_model", repo_type="model", repo_id="bstraehle/Meta-Llama-3.1-8B-Instruct-text-to-sql", ) # Login to the Hugging Face hub repo.login(token=os.environ["HF_TOKEN"]) # Push the model to the hub repo.push_to_hub(commit_message="Initial commit") def prompt_model(model_id, system_prompt, user_prompt, schema): pipe = pipeline("text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", max_new_tokens=1000) messages = [ {"role": "system", "content": system_prompt.format(schema=schema)}, {"role": "user", "content": user_prompt}, {"role": "assistant", "content": ""} ] output = pipe(messages) result = output[0]["generated_text"][-1]["content"] print(result) return result def download_model(base_model_id): tokenizer = AutoTokenizer.from_pretrained(base_model_id) model = AutoModelForCausalLM.from_pretrained(base_model_id) model.save_pretrained(base_model_id) return tokenizer def upload_model(base_model_id, tokenizer): fine_tuned_model_id = replace_hf_profile(base_model_id) login(token=os.environ["HF_TOKEN"]) api = HfApi() #api.delete_repo(repo_id=fine_tuned_model_id, repo_type="model") api.create_repo(repo_id=fine_tuned_model_id) api.upload_folder( folder_path=base_model_id, repo_id=fine_tuned_model_id ) tokenizer.push_to_hub(fine_tuned_model_id) return fine_tuned_model_id def replace_hf_profile(base_model_id): model_id = base_model_id[base_model_id.rfind('/')+1:] return f"{hf_profile}/{model_id}" demo = gr.Interface(fn=process, inputs=[gr.Radio([action_1, action_2], label = "Action", value = action_1), gr.Textbox(label = "Base Model ID", value = base_model_id, lines = 1), gr.Textbox(label = "Dataset", value = dataset, lines = 1), gr.Textbox(label = "System Prompt", value = system_prompt, lines = 2), gr.Textbox(label = "User Prompt", value = user_prompt, lines = 2), gr.Textbox(label = "Schema", value = schema, lines = 2)], outputs=[gr.Textbox(label = "Completion", value = os.environ["OUTPUT"])]) demo.launch()