File size: 5,781 Bytes
2411c9e a28b4b8 ac66ae2 a993443 a70f9f8 256580a 9697caf e760c8d 2dfbd8a c8534fb 3d0bfc5 da6722c df44c11 d157f84 67d5461 2dfbd8a df44c11 d157f84 f67986a 8e78666 5b45741 d157f84 5b45741 d157f84 5b45741 da6722c a9bd106 d157f84 88543e6 5e0038e 092da5d 9cb6b16 092da5d 88543e6 5e0038e d157f84 ffef239 092da5d 7be2c23 88543e6 8cdd9a7 3d77c48 c06669a 3d77c48 8cdd9a7 092da5d 93508c3 092da5d 88543e6 53b729b 5e0038e 9d8f256 53b729b 88543e6 092da5d 53b729b 092da5d 88543e6 1939ff5 9697caf d157f84 9b16331 67ecd94 53b729b 76d0fb3 88543e6 bf28b8c 88543e6 1939ff5 9697caf a871fa1 bb99aa8 53b729b bb99aa8 76d0fb3 8f45dd8 5e0038e 7826053 5e0038e 5bf08ed 256580a d157f84 b85865d da6722c 03a8827 88543e6 03a8827 88543e6 03a8827 da6722c 03a8827 88543e6 03a8827 88543e6 03a8827 7f9f34a 88543e6 613b540 88543e6 2b03f9f 88543e6 96edae0 1afcb19 10e80e0 9697caf 8e78666 bd74e71 1fca62f 88543e6 2371111 b4de4c9 d157f84 2dfbd8a d157f84 2dfbd8a cf51f99 ebe8e62 2411c9e 4ac20b5 083fde1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Run full fine-tuning on Google TPU v5e 2x4 or equivalent (220 vCPU, 380 GB RAM, 128 GB VRAM)
import gradio as gr
import os, torch
from datasets import load_dataset
from huggingface_hub import HfApi, login
from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline
ACTION_1 = "Prompt base model"
ACTION_2 = "Fine-tune base model"
ACTION_3 = "Prompt fine-tuned model"
HF_ACCOUNT = "bstraehle"
SYSTEM_PROMPT = "You are a text to SQL query translator. Given a question in English, generate a SQL query based on the provided SQL_CONTEXT. Do not generate any additional text. SQL_CONTEXT: {sql_context}"
USER_PROMPT = "How many new users joined from countries with stricter data privacy laws than the United States in the past month?"
SQL_CONTEXT = "CREATE TABLE users (user_id INT, country VARCHAR(50), joined_date DATE); CREATE TABLE data_privacy_laws (country VARCHAR(50), privacy_level INT); INSERT INTO users (user_id, country, joined_date) VALUES (1, 'USA', '2023-02-15'), (2, 'Germany', '2023-02-27'); INSERT INTO data_privacy_laws (country, privacy_level) VALUES ('USA', 5), ('Germany', 8);"
PT_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B"
FT_MODEL_NAME = "Meta-Llama-3.1-8B-text-to-sql"
DATASET_NAME = "gretelai/synthetic_text_to_sql"
def process(action, pt_model_name, dataset_name, ft_model_name, system_prompt, user_prompt, sql_context):
raise gr.Error("Please clone and bring your own Hugging Face credentials.")
if action == ACTION_1:
result = prompt_model(pt_model_name, system_prompt, user_prompt, sql_context)
elif action == ACTION_2:
result = fine_tune_model(pt_model_name, dataset_name, ft_model_name)
elif action == ACTION_3:
result = prompt_model(ft_model_name, system_prompt, user_prompt, sql_context)
return result
def fine_tune_model(pt_model_name, dataset_name, ft_model_name):
# Load dataset
dataset = load_dataset(dataset_name)
print("### Dataset")
print(dataset)
print("### Example")
print(dataset["train"][:1])
print("###")
# Load model
model, tokenizer = load_model(pt_model_name)
print("### Model")
print(model)
print("### Tokenizer")
print(tokenizer)
print("###")
# Pre-process dataset
def preprocess(examples):
model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True)
return model_inputs
dataset = dataset.map(preprocess, batched=True)
print("### Pre-processed dataset")
print(dataset)
print("### Example")
print(dataset["train"][:1])
print("###")
# Split dataset into training and evaluation sets
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
print("### Training dataset")
print(train_dataset)
print("### Evaluation dataset")
print(eval_dataset)
print("###")
# Configure training arguments
training_args = Seq2SeqTrainingArguments(
output_dir=f"./{ft_model_name}",
num_train_epochs=3, # 37,500 steps
#max_steps=1, # overwrites num_train_epochs
# TODO https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments
)
print("### Training arguments")
print(training_args)
print("###")
# Create trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
# TODO https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainer
)
# Train model
trainer.train()
# Push model and tokenizer to HF
model.push_to_hub(ft_model_name)
tokenizer.push_to_hub(ft_model_name)
def prompt_model(model_name, system_prompt, user_prompt, sql_context):
pipe = pipeline("text-generation",
model=model_name,
device_map="auto",
max_new_tokens=1000)
messages = [
{"role": "system", "content": system_prompt.format(sql_context=sql_context)},
{"role": "user", "content": user_prompt},
{"role": "assistant", "content": ""}
]
output = pipe(messages)
result = output[0]["generated_text"][-1]["content"]
print("###")
print(result)
print("###")
return result
def load_model(model_name):
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# TODO: PEFT, LoRA & QLoRA https://huggingface.co/blog/mlabonne/sft-llama3
return model, tokenizer
demo = gr.Interface(fn=process,
inputs=[gr.Radio([ACTION_1, ACTION_2, ACTION_3], label = "Action", value = ACTION_3),
gr.Textbox(label = "Pre-Trained Model Name", value = PT_MODEL_NAME, lines = 1),
gr.Textbox(label = "Dataset Name", value = DATASET_NAME, lines = 1),
gr.Textbox(label = "Fine-Tuned Model Name", value = f"{HF_ACCOUNT}/{FT_MODEL_NAME}", lines = 1),
gr.Textbox(label = "System Prompt", value = SYSTEM_PROMPT, lines = 2),
gr.Textbox(label = "User Prompt", value = USER_PROMPT, lines = 2),
gr.Textbox(label = "SQL Context", value = SQL_CONTEXT, lines = 4)],
outputs=[gr.Textbox(label = "Prompt Completion", value = os.environ["OUTPUT"])],
title = "Supervised Fine-Tuning (SFT)",
description = os.environ["DESCRIPTION"])
demo.launch() |