Update app.py
Browse files
app.py
CHANGED
@@ -26,11 +26,6 @@ def process(action, base_model_id, dataset, system_prompt, user_prompt, schema):
|
|
26 |
result = prompt_model(fine_tuned_model_id, system_prompt, user_prompt, schema)
|
27 |
return result
|
28 |
|
29 |
-
# Preprocess the dataset
|
30 |
-
def preprocess(examples):
|
31 |
-
model_inputs = tokenizer(examples["text"], text_target=examples["sql"], max_length=512, truncation=True)
|
32 |
-
return model_inputs
|
33 |
-
|
34 |
def fine_tune_model(base_model_id, dataset):
|
35 |
# tokenizer = download_model(base_model_id)
|
36 |
# fine_tuned_model_id = upload_model(base_model_id, tokenizer)
|
@@ -42,6 +37,11 @@ def fine_tune_model(base_model_id, dataset):
|
|
42 |
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
43 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
44 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
dataset = dataset.map(preprocess, batched=True)
|
47 |
|
|
|
26 |
result = prompt_model(fine_tuned_model_id, system_prompt, user_prompt, schema)
|
27 |
return result
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
def fine_tune_model(base_model_id, dataset):
|
30 |
# tokenizer = download_model(base_model_id)
|
31 |
# fine_tuned_model_id = upload_model(base_model_id, tokenizer)
|
|
|
37 |
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
38 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
40 |
+
|
41 |
+
# Preprocess the dataset
|
42 |
+
def preprocess(examples):
|
43 |
+
model_inputs = tokenizer(examples["text"], text_target=examples["sql"], max_length=512, truncation=True)
|
44 |
+
return model_inputs
|
45 |
|
46 |
dataset = dataset.map(preprocess, batched=True)
|
47 |
|