Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import pytorch_lightning as pl | |
from neuralforecast.core import NeuralForecast | |
from neuralforecast.models import NHITS, TimesNet, LSTM, TFT | |
from neuralforecast.losses.pytorch import HuberMQLoss | |
from neuralforecast.utils import AirPassengersDF | |
import time | |
from st_aggrid import AgGrid | |
from nixtla import NixtlaClient | |
import os | |
st.set_page_config(layout='wide') | |
def load_model(path, freq): | |
nf = NeuralForecast.load(path=path) | |
return nf | |
def load_all_models(): | |
nhits_paths = { | |
'D': './M4/NHITS/daily', | |
'M': './M4/NHITS/monthly', | |
'H': './M4/NHITS/hourly', | |
'W': './M4/NHITS/weekly', | |
'Y': './M4/NHITS/yearly' | |
} | |
timesnet_paths = { | |
'D': './M4/TimesNet/daily', | |
'M': './M4/TimesNet/monthly', | |
'H': './M4/TimesNet/hourly', | |
'W': './M4/TimesNet/weekly', | |
'Y': './M4/TimesNet/yearly' | |
} | |
lstm_paths = { | |
'D': './M4/LSTM/daily', | |
'M': './M4/LSTM/monthly', | |
'H': './M4/LSTM/hourly', | |
'W': './M4/LSTM/weekly', | |
'Y': './M4/LSTM/yearly' | |
} | |
tft_paths = { | |
'D': './M4/TFT/daily', | |
'M': './M4/TFT/monthly', | |
'H': './M4/TFT/hourly', | |
'W': './M4/TFT/weekly', | |
'Y': './M4/TFT/yearly' | |
} | |
nhits_models = {freq: load_model(path, freq) for freq, path in nhits_paths.items()} | |
timesnet_models = {freq: load_model(path, freq) for freq, path in timesnet_paths.items()} | |
lstm_models = {freq: load_model(path, freq) for freq, path in lstm_paths.items()} | |
tft_models = {freq: load_model(path, freq) for freq, path in tft_paths.items()} | |
return nhits_models, timesnet_models, lstm_models, tft_models | |
def generate_forecast(model, df,tag=False): | |
if tag == 'retrain': | |
forecast_df = model.predict() | |
else: | |
forecast_df = model.predict(df=df) | |
return forecast_df | |
def determine_frequency(df): | |
df['ds'] = pd.to_datetime(df['ds']) | |
df = df.drop_duplicates(subset='ds') | |
df = df.set_index('ds') | |
# # Create a complete date range | |
# full_range = pd.date_range(start=df.index.min(), end=df.index.max(),freq=freq) | |
# # Reindex the DataFrame to this full date range | |
# df_full = df.reindex(full_range) | |
# Infer the frequency | |
# freq = pd.infer_freq(df_full.index) | |
freq = pd.infer_freq(df.index) | |
if not freq: | |
st.warning('The forecast will use default Daily forecast due to date inconsistency. Please check your data.',icon="⚠️") | |
freq = 'D' | |
return freq | |
import plotly.graph_objects as go | |
def plot_forecasts(forecast_df, train_df, title): | |
# Combine historical and forecast data | |
plot_df = pd.concat([train_df, forecast_df]).set_index('ds') | |
# Find relevant columns | |
historical_col = 'y' | |
forecast_col = next((col for col in plot_df.columns if 'median' in col), None) | |
lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None) | |
hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None) | |
if forecast_col is None: | |
raise KeyError("No forecast column found in the data.") | |
# Create Plotly figure | |
fig = go.Figure() | |
# Add historical data | |
fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[historical_col], mode='lines', name='Historical')) | |
# Add forecast data | |
fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[forecast_col], mode='lines', name='Forecast')) | |
# Add confidence interval if available | |
if lo_col and hi_col: | |
fig.add_trace(go.Scatter( | |
x=plot_df.index, | |
y=plot_df[hi_col], | |
mode='lines', | |
line=dict(color='rgba(0,100,80,0.2)'), | |
showlegend=False | |
)) | |
fig.add_trace(go.Scatter( | |
x=plot_df.index, | |
y=plot_df[lo_col], | |
mode='lines', | |
line=dict(color='rgba(0,100,80,0.2)'), | |
fill='tonexty', | |
fillcolor='rgba(0,100,80,0.2)', | |
name='90% Confidence Interval' | |
)) | |
# Update layout | |
fig.update_layout( | |
title=title, | |
xaxis_title='Timestamp [t]', | |
yaxis_title='Value', | |
template='plotly_white' | |
) | |
# Display the plot | |
st.plotly_chart(fig) | |
def select_model_based_on_frequency(freq, nhits_models, timesnet_models, lstm_models, tft_models): | |
if freq == 'D': | |
return nhits_models['D'], timesnet_models['D'], lstm_models['D'], tft_models['D'] | |
elif freq == 'ME': | |
return nhits_models['M'], timesnet_models['M'], lstm_models['M'], tft_models['M'] | |
elif freq == 'H': | |
return nhits_models['H'], timesnet_models['H'], lstm_models['H'], tft_models['H'] | |
elif freq in ['W', 'W-SUN']: | |
return nhits_models['W'], timesnet_models['W'], lstm_models['W'], tft_models['W'] | |
elif freq in ['Y', 'Y-DEC']: | |
return nhits_models['Y'], timesnet_models['Y'], lstm_models['Y'], tft_models['Y'] | |
else: | |
raise ValueError(f"Unsupported frequency: {freq}") | |
def load_default(): | |
df = AirPassengersDF.copy() | |
return df | |
def transfer_learning_forecasting(): | |
st.title("Zero-shot Forecasting") | |
st.markdown(""" | |
Instant time series forecasting and visualization by using various pre-trained deep neural network-based model trained on M4 data. | |
""") | |
nhits_models, timesnet_models, lstm_models, tft_models = load_all_models() | |
with st.sidebar.expander("Upload and Configure Dataset", expanded=True): | |
if 'uploaded_file' not in st.session_state: | |
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"]) | |
if uploaded_file: | |
df = pd.read_csv(uploaded_file) | |
st.session_state.df = df | |
st.session_state.uploaded_file = uploaded_file | |
else: | |
df = load_default() | |
st.session_state.df = df | |
else: | |
if st.checkbox("Upload a new file (CSV)"): | |
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"]) | |
if uploaded_file: | |
df = pd.read_csv(uploaded_file) | |
st.session_state.df = df | |
st.session_state.uploaded_file = uploaded_file | |
else: | |
df = st.session_state.df | |
else: | |
df = st.session_state.df | |
columns = df.columns.tolist() | |
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0) | |
target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')] | |
y_col = st.selectbox("Select Target column", options=target_columns, index=0) | |
st.session_state.ds_col = ds_col | |
st.session_state.y_col = y_col | |
# Model selection and forecasting | |
st.sidebar.subheader("Model Selection and Forecasting") | |
model_choice = st.sidebar.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"]) | |
horizon = st.sidebar.number_input("Forecast horizon", value=12) | |
df = df.rename(columns={ds_col: 'ds', y_col: 'y'}) | |
df['unique_id']=1 | |
df = df[['unique_id','ds','y']] | |
# Determine frequency of data | |
frequency = determine_frequency(df) | |
st.sidebar.write(f"Detected frequency: {frequency}") | |
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models) | |
forecast_results = {} | |
if st.sidebar.button("Submit"): | |
start_time = time.time() # Start timing | |
if model_choice == "NHITS": | |
forecast_results['NHITS'] = generate_forecast(nhits_model, df) | |
elif model_choice == "TimesNet": | |
forecast_results['TimesNet'] = generate_forecast(timesnet_model, df) | |
elif model_choice == "LSTM": | |
forecast_results['LSTM'] = generate_forecast(lstm_model, df) | |
elif model_choice == "TFT": | |
forecast_results['TFT'] = generate_forecast(tft_model, df) | |
st.session_state.forecast_results = forecast_results | |
for model_name, forecast_df in forecast_results.items(): | |
plot_forecasts(forecast_df.iloc[:horizon,:], df, f'{model_name} Forecast for {y_col}') | |
end_time = time.time() # End timing | |
time_taken = end_time - start_time | |
st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds") | |
if 'forecast_results' in st.session_state: | |
forecast_results = st.session_state.forecast_results | |
st.markdown('You can download Input and Forecast Data below') | |
tab_insample, tab_forecast = st.tabs( | |
["Input data", "Forecast"] | |
) | |
with tab_insample: | |
df_grid = df.drop(columns="unique_id") | |
st.write(df_grid) | |
# grid_table = AgGrid( | |
# df_grid, | |
# theme="alpine", | |
# ) | |
with tab_forecast: | |
if model_choice in forecast_results: | |
df_grid = forecast_results[model_choice] | |
st.write(df_grid) | |
# grid_table = AgGrid( | |
# df_grid, | |
# theme="alpine", | |
# ) | |
def personalized_forecasting(): | |
st.title('Personalized Forecasting') | |
st.subheader("Coming soon. Stay tuned") | |
pg = st.navigation({ | |
"Neuralforecast": [ | |
# Load pages from functions | |
st.Page(transfer_learning_forecasting, title="Zero-shot Forecasting", default=True, icon=":material/query_stats:"), | |
st.Page(personalized_forecasting, title="Personalized Forecasting", icon=":material/star:") | |
], | |
}) | |
pg.run() | |