Spaces:
Sleeping
Sleeping
File size: 10,030 Bytes
b2108ae e5e340b d511c44 e5e340b c0809e5 e5e340b 64e36b4 7cecffc 971fffe 7cecffc 4d6d97a e5e340b f4d5347 e5e340b 340176f f4d5347 340176f f4d5347 340176f f4d5347 e5e340b 2b898e9 f4d5347 34960fe f4d5347 e5e340b f4d5347 91a8ee3 f4d5347 91a8ee3 f4d5347 91a8ee3 f4d5347 08750ad f4d5347 08750ad f4d5347 8c26465 f4d5347 e5e340b d511c44 f4d5347 90869c2 d511c44 932e273 f4d5347 f932524 f4d5347 4f9e43c f4d5347 cb9ca26 f4d5347 67e7e14 f4d5347 7cecffc f4d5347 7cecffc d511c44 932e273 d511c44 932e273 aff7b76 7cecffc d511c44 d066a0e 0b84d55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NHITS, TimesNet, LSTM, TFT
from neuralforecast.losses.pytorch import HuberMQLoss
from neuralforecast.utils import AirPassengersDF
import time
from st_aggrid import AgGrid
from nixtla import NixtlaClient
import os
st.set_page_config(layout='wide')
@st.cache_resource
def load_model(path, freq):
nf = NeuralForecast.load(path=path)
return nf
@st.cache_resource
def load_all_models():
nhits_paths = {
'D': './M4/NHITS/daily',
'M': './M4/NHITS/monthly',
'H': './M4/NHITS/hourly',
'W': './M4/NHITS/weekly',
'Y': './M4/NHITS/yearly'
}
timesnet_paths = {
'D': './M4/TimesNet/daily',
'M': './M4/TimesNet/monthly',
'H': './M4/TimesNet/hourly',
'W': './M4/TimesNet/weekly',
'Y': './M4/TimesNet/yearly'
}
lstm_paths = {
'D': './M4/LSTM/daily',
'M': './M4/LSTM/monthly',
'H': './M4/LSTM/hourly',
'W': './M4/LSTM/weekly',
'Y': './M4/LSTM/yearly'
}
tft_paths = {
'D': './M4/TFT/daily',
'M': './M4/TFT/monthly',
'H': './M4/TFT/hourly',
'W': './M4/TFT/weekly',
'Y': './M4/TFT/yearly'
}
nhits_models = {freq: load_model(path, freq) for freq, path in nhits_paths.items()}
timesnet_models = {freq: load_model(path, freq) for freq, path in timesnet_paths.items()}
lstm_models = {freq: load_model(path, freq) for freq, path in lstm_paths.items()}
tft_models = {freq: load_model(path, freq) for freq, path in tft_paths.items()}
return nhits_models, timesnet_models, lstm_models, tft_models
def generate_forecast(model, df,tag=False):
if tag == 'retrain':
forecast_df = model.predict()
else:
forecast_df = model.predict(df=df)
return forecast_df
def determine_frequency(df):
df['ds'] = pd.to_datetime(df['ds'])
df = df.drop_duplicates(subset='ds')
df = df.set_index('ds')
# # Create a complete date range
# full_range = pd.date_range(start=df.index.min(), end=df.index.max(),freq=freq)
# # Reindex the DataFrame to this full date range
# df_full = df.reindex(full_range)
# Infer the frequency
# freq = pd.infer_freq(df_full.index)
freq = pd.infer_freq(df.index)
if not freq:
st.warning('The forecast will use default Daily forecast due to date inconsistency. Please check your data.',icon="⚠️")
freq = 'D'
return freq
import plotly.graph_objects as go
def plot_forecasts(forecast_df, train_df, title):
# Combine historical and forecast data
plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
# Find relevant columns
historical_col = 'y'
forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
if forecast_col is None:
raise KeyError("No forecast column found in the data.")
# Create Plotly figure
fig = go.Figure()
# Add historical data
fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[historical_col], mode='lines', name='Historical'))
# Add forecast data
fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[forecast_col], mode='lines', name='Forecast'))
# Add confidence interval if available
if lo_col and hi_col:
fig.add_trace(go.Scatter(
x=plot_df.index,
y=plot_df[hi_col],
mode='lines',
line=dict(color='rgba(0,100,80,0.2)'),
showlegend=False
))
fig.add_trace(go.Scatter(
x=plot_df.index,
y=plot_df[lo_col],
mode='lines',
line=dict(color='rgba(0,100,80,0.2)'),
fill='tonexty',
fillcolor='rgba(0,100,80,0.2)',
name='90% Confidence Interval'
))
# Update layout
fig.update_layout(
title=title,
xaxis_title='Timestamp [t]',
yaxis_title='Value',
template='plotly_white'
)
# Display the plot
st.plotly_chart(fig)
def select_model_based_on_frequency(freq, nhits_models, timesnet_models, lstm_models, tft_models):
if freq == 'D':
return nhits_models['D'], timesnet_models['D'], lstm_models['D'], tft_models['D']
elif freq == 'ME':
return nhits_models['M'], timesnet_models['M'], lstm_models['M'], tft_models['M']
elif freq == 'H':
return nhits_models['H'], timesnet_models['H'], lstm_models['H'], tft_models['H']
elif freq in ['W', 'W-SUN']:
return nhits_models['W'], timesnet_models['W'], lstm_models['W'], tft_models['W']
elif freq in ['Y', 'Y-DEC']:
return nhits_models['Y'], timesnet_models['Y'], lstm_models['Y'], tft_models['Y']
else:
raise ValueError(f"Unsupported frequency: {freq}")
@st.cache_data
def load_default():
df = AirPassengersDF.copy()
return df
def transfer_learning_forecasting():
st.title("Zero-shot Forecasting")
st.markdown("""
Instant time series forecasting and visualization by using various pre-trained deep neural network-based model trained on M4 data.
""")
nhits_models, timesnet_models, lstm_models, tft_models = load_all_models()
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
if 'uploaded_file' not in st.session_state:
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = load_default()
st.session_state.df = df
else:
if st.checkbox("Upload a new file (CSV)"):
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
st.session_state.uploaded_file = uploaded_file
else:
df = st.session_state.df
else:
df = st.session_state.df
columns = df.columns.tolist()
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
y_col = st.selectbox("Select Target column", options=target_columns, index=0)
st.session_state.ds_col = ds_col
st.session_state.y_col = y_col
# Model selection and forecasting
st.sidebar.subheader("Model Selection and Forecasting")
model_choice = st.sidebar.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
horizon = st.sidebar.number_input("Forecast horizon", value=12)
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
df['unique_id']=1
df = df[['unique_id','ds','y']]
# Determine frequency of data
frequency = determine_frequency(df)
st.sidebar.write(f"Detected frequency: {frequency}")
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
forecast_results = {}
if st.sidebar.button("Submit"):
start_time = time.time() # Start timing
if model_choice == "NHITS":
forecast_results['NHITS'] = generate_forecast(nhits_model, df)
elif model_choice == "TimesNet":
forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
elif model_choice == "LSTM":
forecast_results['LSTM'] = generate_forecast(lstm_model, df)
elif model_choice == "TFT":
forecast_results['TFT'] = generate_forecast(tft_model, df)
st.session_state.forecast_results = forecast_results
for model_name, forecast_df in forecast_results.items():
plot_forecasts(forecast_df.iloc[:horizon,:], df, f'{model_name} Forecast for {y_col}')
end_time = time.time() # End timing
time_taken = end_time - start_time
st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")
if 'forecast_results' in st.session_state:
forecast_results = st.session_state.forecast_results
st.markdown('You can download Input and Forecast Data below')
tab_insample, tab_forecast = st.tabs(
["Input data", "Forecast"]
)
with tab_insample:
df_grid = df.drop(columns="unique_id")
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
with tab_forecast:
if model_choice in forecast_results:
df_grid = forecast_results[model_choice]
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
def personalized_forecasting():
st.title('Personalized Forecasting')
st.subheader("Coming soon. Stay tuned")
pg = st.navigation({
"Neuralforecast": [
# Load pages from functions
st.Page(transfer_learning_forecasting, title="Zero-shot Forecasting", default=True, icon=":material/query_stats:"),
st.Page(personalized_forecasting, title="Personalized Forecasting", icon=":material/star:")
],
})
pg.run()
|