File size: 10,030 Bytes
b2108ae
e5e340b
 
d511c44
e5e340b
 
 
c0809e5
e5e340b
64e36b4
7cecffc
971fffe
7cecffc
4d6d97a
 
e5e340b
 
f4d5347
 
e5e340b
340176f
 
f4d5347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340176f
 
f4d5347
 
 
 
 
 
 
 
 
 
 
 
 
340176f
f4d5347
 
 
 
 
 
e5e340b
2b898e9
f4d5347
 
 
 
 
 
 
 
 
 
 
 
 
 
34960fe
f4d5347
 
 
e5e340b
 
f4d5347
 
 
91a8ee3
f4d5347
91a8ee3
f4d5347
 
91a8ee3
 
 
 
 
f4d5347
 
 
 
 
 
 
 
08750ad
f4d5347
 
08750ad
f4d5347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c26465
f4d5347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e340b
d511c44
 
f4d5347
 
90869c2
d511c44
932e273
f4d5347
 
 
 
 
f932524
f4d5347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f9e43c
f4d5347
 
 
 
 
 
cb9ca26
f4d5347
67e7e14
f4d5347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cecffc
f4d5347
 
 
7cecffc
d511c44
932e273
d511c44
932e273
aff7b76
7cecffc
d511c44
 
d066a0e
0b84d55
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NHITS, TimesNet, LSTM, TFT
from neuralforecast.losses.pytorch import HuberMQLoss
from neuralforecast.utils import AirPassengersDF
import time
from st_aggrid import AgGrid
from nixtla import NixtlaClient
import os

st.set_page_config(layout='wide')
    
@st.cache_resource
def load_model(path, freq):
    nf = NeuralForecast.load(path=path)
    return nf

@st.cache_resource
def load_all_models():
    nhits_paths = {
        'D': './M4/NHITS/daily',
        'M': './M4/NHITS/monthly',
        'H': './M4/NHITS/hourly',
        'W': './M4/NHITS/weekly',
        'Y': './M4/NHITS/yearly'
    }
    
    timesnet_paths = {
        'D': './M4/TimesNet/daily',
        'M': './M4/TimesNet/monthly',
        'H': './M4/TimesNet/hourly',
        'W': './M4/TimesNet/weekly',
        'Y': './M4/TimesNet/yearly'
    }
    
    lstm_paths = {
        'D': './M4/LSTM/daily',
        'M': './M4/LSTM/monthly',
        'H': './M4/LSTM/hourly',
        'W': './M4/LSTM/weekly',
        'Y': './M4/LSTM/yearly'
    }
    
    tft_paths = {
        'D': './M4/TFT/daily',
        'M': './M4/TFT/monthly',
        'H': './M4/TFT/hourly',
        'W': './M4/TFT/weekly',
        'Y': './M4/TFT/yearly'
    }
    nhits_models = {freq: load_model(path, freq) for freq, path in nhits_paths.items()}
    timesnet_models = {freq: load_model(path, freq) for freq, path in timesnet_paths.items()}
    lstm_models = {freq: load_model(path, freq) for freq, path in lstm_paths.items()}
    tft_models = {freq: load_model(path, freq) for freq, path in tft_paths.items()}

    return nhits_models, timesnet_models, lstm_models, tft_models

def generate_forecast(model, df,tag=False):
    if tag == 'retrain':
        forecast_df = model.predict()
    else:
        forecast_df = model.predict(df=df)
    return forecast_df

def determine_frequency(df):
    df['ds'] = pd.to_datetime(df['ds'])
    df = df.drop_duplicates(subset='ds')
    df = df.set_index('ds')
    
    # # Create a complete date range
    # full_range = pd.date_range(start=df.index.min(), end=df.index.max(),freq=freq)
    
    # # Reindex the DataFrame to this full date range
    # df_full = df.reindex(full_range)
    
    # Infer the frequency
    # freq = pd.infer_freq(df_full.index)

    freq = pd.infer_freq(df.index)
    if not freq:
        st.warning('The forecast will use default Daily forecast due to date inconsistency. Please check your data.',icon="⚠️")
        freq = 'D'
        
    return freq


import plotly.graph_objects as go

def plot_forecasts(forecast_df, train_df, title):
    # Combine historical and forecast data
    plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
    
    # Find relevant columns
    historical_col = 'y'
    forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
    lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
    hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
    
    if forecast_col is None:
        raise KeyError("No forecast column found in the data.")
    
    # Create Plotly figure
    fig = go.Figure()
    
    # Add historical data
    fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[historical_col], mode='lines', name='Historical'))
    
    # Add forecast data
    fig.add_trace(go.Scatter(x=plot_df.index, y=plot_df[forecast_col], mode='lines', name='Forecast'))
    
    # Add confidence interval if available
    if lo_col and hi_col:
        fig.add_trace(go.Scatter(
            x=plot_df.index,
            y=plot_df[hi_col],
            mode='lines',
            line=dict(color='rgba(0,100,80,0.2)'),
            showlegend=False
        ))
        fig.add_trace(go.Scatter(
            x=plot_df.index,
            y=plot_df[lo_col],
            mode='lines',
            line=dict(color='rgba(0,100,80,0.2)'),
            fill='tonexty',
            fillcolor='rgba(0,100,80,0.2)',
            name='90% Confidence Interval'
        ))
    
    # Update layout
    fig.update_layout(
        title=title,
        xaxis_title='Timestamp [t]',
        yaxis_title='Value',
        template='plotly_white'
    )
    
    # Display the plot
    st.plotly_chart(fig)


def select_model_based_on_frequency(freq, nhits_models, timesnet_models, lstm_models, tft_models):
    if freq == 'D':
        return nhits_models['D'], timesnet_models['D'], lstm_models['D'], tft_models['D']
    elif freq == 'ME':
        return nhits_models['M'], timesnet_models['M'], lstm_models['M'], tft_models['M']
    elif freq == 'H':
        return nhits_models['H'], timesnet_models['H'], lstm_models['H'], tft_models['H']
    elif freq in ['W', 'W-SUN']:
        return nhits_models['W'], timesnet_models['W'], lstm_models['W'], tft_models['W']
    elif freq in ['Y', 'Y-DEC']:
        return nhits_models['Y'], timesnet_models['Y'], lstm_models['Y'], tft_models['Y']
    else:
        raise ValueError(f"Unsupported frequency: {freq}")

@st.cache_data
def load_default():
    df = AirPassengersDF.copy()
    return df

def transfer_learning_forecasting():
    st.title("Zero-shot Forecasting")
    st.markdown("""
    Instant time series forecasting and visualization by using various pre-trained deep neural network-based model trained on M4 data.
    """)

    nhits_models, timesnet_models, lstm_models, tft_models = load_all_models()
    
    with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
        if 'uploaded_file' not in st.session_state:
            uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
            if uploaded_file:
                df = pd.read_csv(uploaded_file)
                st.session_state.df = df
                st.session_state.uploaded_file = uploaded_file
            else:
                df = load_default()
                st.session_state.df = df
        else:
            if st.checkbox("Upload a new file (CSV)"):
                uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
                if uploaded_file:
                    df = pd.read_csv(uploaded_file)
                    st.session_state.df = df
                    st.session_state.uploaded_file = uploaded_file
                else:
                    df = st.session_state.df
            else:
                df = st.session_state.df

        columns = df.columns.tolist()
        ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
        target_columns = [col for col in columns if (col != ds_col) and (col != 'unique_id')]
        y_col = st.selectbox("Select Target column", options=target_columns, index=0)

        st.session_state.ds_col = ds_col
        st.session_state.y_col = y_col

    # Model selection and forecasting
    st.sidebar.subheader("Model Selection and Forecasting")
    model_choice = st.sidebar.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
    horizon = st.sidebar.number_input("Forecast horizon", value=12)

    df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
    df['unique_id']=1
    df = df[['unique_id','ds','y']]

    # Determine frequency of data
    frequency = determine_frequency(df)
    st.sidebar.write(f"Detected frequency: {frequency}")


    nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
    forecast_results = {}

    

    if st.sidebar.button("Submit"):
        start_time = time.time()  # Start timing
        if model_choice == "NHITS":
            forecast_results['NHITS'] = generate_forecast(nhits_model, df)
        elif model_choice == "TimesNet":
            forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
        elif model_choice == "LSTM":
            forecast_results['LSTM'] = generate_forecast(lstm_model, df)
        elif model_choice == "TFT":
            forecast_results['TFT'] = generate_forecast(tft_model, df)

        st.session_state.forecast_results = forecast_results
        for model_name, forecast_df in forecast_results.items():
            plot_forecasts(forecast_df.iloc[:horizon,:], df, f'{model_name} Forecast for {y_col}')

        end_time = time.time()  # End timing
        time_taken = end_time - start_time
        st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")

        if 'forecast_results' in st.session_state:
            forecast_results = st.session_state.forecast_results
    
            st.markdown('You can download Input and Forecast Data below')
            tab_insample, tab_forecast  = st.tabs(
                            ["Input data", "Forecast"]
                        )
                
            with tab_insample:
                df_grid = df.drop(columns="unique_id")
                st.write(df_grid)
                # grid_table = AgGrid(
                #                 df_grid,
                #                 theme="alpine",
                #             )
        
            with tab_forecast:
                if model_choice in forecast_results:
                    df_grid = forecast_results[model_choice]
                    st.write(df_grid)
                    # grid_table = AgGrid(
                    #                 df_grid,
                    #                 theme="alpine",
                    #             )

def personalized_forecasting():
    st.title('Personalized Forecasting')
    st.subheader("Coming soon. Stay tuned")

pg = st.navigation({
    "Neuralforecast": [
        # Load pages from functions
        st.Page(transfer_learning_forecasting, title="Zero-shot Forecasting", default=True, icon=":material/query_stats:"),
        st.Page(personalized_forecasting, title="Personalized Forecasting", icon=":material/star:")
    ],
})

pg.run()