|
from typing import List, Dict |
|
import httpx |
|
import gradio as gr |
|
import pandas as pd |
|
from huggingface_hub import HfApi, ModelCard |
|
import base64 |
|
import io |
|
import zipfile |
|
import asyncio |
|
import aiohttp |
|
from pathlib import Path |
|
import emoji |
|
|
|
def search_hub(query: str, search_type: str) -> pd.DataFrame: |
|
api = HfApi() |
|
if search_type == "Models": |
|
results = api.list_models(search=query) |
|
data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads, "link": f"https://huggingface.co/{model.modelId}"} for model in results] |
|
elif search_type == "Datasets": |
|
results = api.list_datasets(search=query) |
|
data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads, "link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results] |
|
elif search_type == "Spaces": |
|
results = api.list_spaces(search=query) |
|
data = [{"id": space.id, "author": space.author, "link": f"https://huggingface.co/spaces/{space.id}"} for space in results] |
|
else: |
|
data = [] |
|
|
|
|
|
for i, item in enumerate(data, 1): |
|
item['number'] = i |
|
item['formatted_link'] = format_link(item, i, search_type) |
|
|
|
return pd.DataFrame(data) |
|
|
|
def format_link(item: Dict, number: int, search_type: str) -> str: |
|
link = item['link'] |
|
readme_link = f"{link}/blob/main/README.md" |
|
title = f"{number}. {item['id']}" |
|
|
|
metadata = f"Author: {item['author']}" |
|
if 'downloads' in item: |
|
metadata += f", Downloads: {item['downloads']}" |
|
|
|
html = f""" |
|
<div style="margin-bottom: 10px;"> |
|
<strong>{title}</strong><br> |
|
<a href="{link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View {search_type[:-1]}</a> | |
|
<a href="{readme_link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View README</a><br> |
|
<small>{metadata}</small> |
|
</div> |
|
""" |
|
return html |
|
|
|
async def download_readme(session: aiohttp.ClientSession, item: Dict) -> tuple[str, str]: |
|
"""Download README.md file for a given item.""" |
|
item_id = item['id'] |
|
raw_url = f"https://huggingface.co/{item_id}/raw/main/README.md" |
|
try: |
|
async with session.get(raw_url) as response: |
|
if response.status == 200: |
|
content = await response.text() |
|
return item_id.replace('/', '_'), content |
|
return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nStatus code: {response.status}" |
|
except Exception as e: |
|
return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nError: {str(e)}" |
|
|
|
async def download_all_readmes(data: List[Dict]) -> str: |
|
"""Download all README files and create a zip archive.""" |
|
zip_buffer = io.BytesIO() |
|
|
|
async with aiohttp.ClientSession() as session: |
|
|
|
tasks = [download_readme(session, item) for item in data] |
|
results = await asyncio.gather(*tasks) |
|
|
|
|
|
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file: |
|
for filename, content in results: |
|
zip_file.writestr(f"{filename}.md", content) |
|
|
|
|
|
zip_buffer.seek(0) |
|
base64_zip = base64.b64encode(zip_buffer.getvalue()).decode() |
|
return base64_zip |
|
|
|
def create_download_link(base64_zip: str) -> str: |
|
"""Create an HTML download link for the zip file.""" |
|
download_link = f""" |
|
<a href="data:application/zip;base64,{base64_zip}" |
|
download="readmes.zip" |
|
style="display: inline-block; padding: 10px 20px; |
|
background-color: #4CAF50; color: white; |
|
text-decoration: none; border-radius: 5px; |
|
margin-top: 10px;"> |
|
📥 Download READMEs Archive |
|
</a> |
|
""" |
|
return download_link |
|
|
|
def display_results(df: pd.DataFrame): |
|
if df is not None and not df.empty: |
|
html = "<div style='max-height: 400px; overflow-y: auto;'>" |
|
for _, row in df.iterrows(): |
|
html += row['formatted_link'] |
|
html += "</div>" |
|
return html |
|
else: |
|
return "<p>No results found.</p>" |
|
|
|
def SwarmyTime(data: List[Dict]) -> Dict: |
|
"""Aggregates all content from the given data.""" |
|
aggregated = { |
|
"total_items": len(data), |
|
"unique_authors": set(), |
|
"total_downloads": 0, |
|
"item_types": {"Models": 0, "Datasets": 0, "Spaces": 0} |
|
} |
|
|
|
for item in data: |
|
aggregated["unique_authors"].add(item.get("author", "Unknown")) |
|
aggregated["total_downloads"] += item.get("downloads", 0) |
|
|
|
if "modelId" in item: |
|
aggregated["item_types"]["Models"] += 1 |
|
elif "dataset" in item.get("id", ""): |
|
aggregated["item_types"]["Datasets"] += 1 |
|
else: |
|
aggregated["item_types"]["Spaces"] += 1 |
|
|
|
aggregated["unique_authors"] = len(aggregated["unique_authors"]) |
|
return aggregated |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Search the Hugging Face Hub") |
|
with gr.Row(): |
|
search_query = gr.Textbox(label="Search Query", value="awacke1") |
|
search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models") |
|
search_button = gr.Button("Search") |
|
|
|
results_html = gr.HTML(label="Search Results") |
|
download_html = gr.HTML(label="Download Link") |
|
metadata_output = gr.Textbox(label="Metadata", lines=10) |
|
aggregated_output = gr.JSON(label="Aggregated Content") |
|
|
|
current_results = gr.State([]) |
|
|
|
async def search_and_aggregate(query, search_type): |
|
df = search_hub(query, search_type) |
|
data = df.to_dict('records') |
|
aggregated = SwarmyTime(data) |
|
html_results = display_results(df) |
|
|
|
|
|
download_button = """ |
|
<button onclick="downloadReadmes()" |
|
style="padding: 10px 20px; |
|
background-color: #4CAF50; |
|
color: white; |
|
border: none; |
|
border-radius: 5px; |
|
cursor: pointer;"> |
|
📚 Download All READMEs |
|
</button> |
|
""" |
|
|
|
return html_results, download_button, aggregated, data |
|
|
|
async def download_readmes(data): |
|
if not data: |
|
return "No results to download" |
|
|
|
base64_zip = await download_all_readmes(data) |
|
return create_download_link(base64_zip) |
|
|
|
search_button.click( |
|
search_and_aggregate, |
|
inputs=[search_query, search_type], |
|
outputs=[results_html, download_html, aggregated_output, current_results] |
|
) |
|
|
|
|
|
download_html.click( |
|
download_readmes, |
|
inputs=[current_results], |
|
outputs=[download_html] |
|
) |
|
|
|
demo.launch(debug=True) |