awacke1's picture
Create app.py
728ab87 verified
raw
history blame
6.97 kB
from typing import List, Dict
import httpx
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, ModelCard
import base64
import io
import zipfile
import asyncio
import aiohttp
from pathlib import Path
import emoji
def search_hub(query: str, search_type: str) -> pd.DataFrame:
api = HfApi()
if search_type == "Models":
results = api.list_models(search=query)
data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads, "link": f"https://huggingface.co/{model.modelId}"} for model in results]
elif search_type == "Datasets":
results = api.list_datasets(search=query)
data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads, "link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results]
elif search_type == "Spaces":
results = api.list_spaces(search=query)
data = [{"id": space.id, "author": space.author, "link": f"https://huggingface.co/spaces/{space.id}"} for space in results]
else:
data = []
# Add numbering and format the link
for i, item in enumerate(data, 1):
item['number'] = i
item['formatted_link'] = format_link(item, i, search_type)
return pd.DataFrame(data)
def format_link(item: Dict, number: int, search_type: str) -> str:
link = item['link']
readme_link = f"{link}/blob/main/README.md"
title = f"{number}. {item['id']}"
metadata = f"Author: {item['author']}"
if 'downloads' in item:
metadata += f", Downloads: {item['downloads']}"
html = f"""
<div style="margin-bottom: 10px;">
<strong>{title}</strong><br>
<a href="{link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View {search_type[:-1]}</a> |
<a href="{readme_link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View README</a><br>
<small>{metadata}</small>
</div>
"""
return html
async def download_readme(session: aiohttp.ClientSession, item: Dict) -> tuple[str, str]:
"""Download README.md file for a given item."""
item_id = item['id']
raw_url = f"https://huggingface.co/{item_id}/raw/main/README.md"
try:
async with session.get(raw_url) as response:
if response.status == 200:
content = await response.text()
return item_id.replace('/', '_'), content
return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nStatus code: {response.status}"
except Exception as e:
return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nError: {str(e)}"
async def download_all_readmes(data: List[Dict]) -> str:
"""Download all README files and create a zip archive."""
zip_buffer = io.BytesIO()
async with aiohttp.ClientSession() as session:
# Download all READMEs concurrently
tasks = [download_readme(session, item) for item in data]
results = await asyncio.gather(*tasks)
# Create zip file
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
for filename, content in results:
zip_file.writestr(f"{filename}.md", content)
# Convert to base64
zip_buffer.seek(0)
base64_zip = base64.b64encode(zip_buffer.getvalue()).decode()
return base64_zip
def create_download_link(base64_zip: str) -> str:
"""Create an HTML download link for the zip file."""
download_link = f"""
<a href="data:application/zip;base64,{base64_zip}"
download="readmes.zip"
style="display: inline-block; padding: 10px 20px;
background-color: #4CAF50; color: white;
text-decoration: none; border-radius: 5px;
margin-top: 10px;">
📥 Download READMEs Archive
</a>
"""
return download_link
def display_results(df: pd.DataFrame):
if df is not None and not df.empty:
html = "<div style='max-height: 400px; overflow-y: auto;'>"
for _, row in df.iterrows():
html += row['formatted_link']
html += "</div>"
return html
else:
return "<p>No results found.</p>"
def SwarmyTime(data: List[Dict]) -> Dict:
"""Aggregates all content from the given data."""
aggregated = {
"total_items": len(data),
"unique_authors": set(),
"total_downloads": 0,
"item_types": {"Models": 0, "Datasets": 0, "Spaces": 0}
}
for item in data:
aggregated["unique_authors"].add(item.get("author", "Unknown"))
aggregated["total_downloads"] += item.get("downloads", 0)
if "modelId" in item:
aggregated["item_types"]["Models"] += 1
elif "dataset" in item.get("id", ""):
aggregated["item_types"]["Datasets"] += 1
else:
aggregated["item_types"]["Spaces"] += 1
aggregated["unique_authors"] = len(aggregated["unique_authors"])
return aggregated
with gr.Blocks() as demo:
gr.Markdown("## Search the Hugging Face Hub")
with gr.Row():
search_query = gr.Textbox(label="Search Query", value="awacke1")
search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models")
search_button = gr.Button("Search")
results_html = gr.HTML(label="Search Results")
download_html = gr.HTML(label="Download Link")
metadata_output = gr.Textbox(label="Metadata", lines=10)
aggregated_output = gr.JSON(label="Aggregated Content")
current_results = gr.State([]) # Store current search results
async def search_and_aggregate(query, search_type):
df = search_hub(query, search_type)
data = df.to_dict('records')
aggregated = SwarmyTime(data)
html_results = display_results(df)
# Create download button
download_button = """
<button onclick="downloadReadmes()"
style="padding: 10px 20px;
background-color: #4CAF50;
color: white;
border: none;
border-radius: 5px;
cursor: pointer;">
📚 Download All READMEs
</button>
"""
return html_results, download_button, aggregated, data
async def download_readmes(data):
if not data:
return "No results to download"
base64_zip = await download_all_readmes(data)
return create_download_link(base64_zip)
search_button.click(
search_and_aggregate,
inputs=[search_query, search_type],
outputs=[results_html, download_html, aggregated_output, current_results]
)
# Add download button click handler
download_html.click(
download_readmes,
inputs=[current_results],
outputs=[download_html]
)
demo.launch(debug=True)