Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict
|
2 |
+
import httpx
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
from huggingface_hub import HfApi, ModelCard
|
6 |
+
import base64
|
7 |
+
import io
|
8 |
+
import zipfile
|
9 |
+
import asyncio
|
10 |
+
import aiohttp
|
11 |
+
from pathlib import Path
|
12 |
+
import emoji
|
13 |
+
|
14 |
+
def search_hub(query: str, search_type: str) -> pd.DataFrame:
|
15 |
+
api = HfApi()
|
16 |
+
if search_type == "Models":
|
17 |
+
results = api.list_models(search=query)
|
18 |
+
data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads, "link": f"https://huggingface.co/{model.modelId}"} for model in results]
|
19 |
+
elif search_type == "Datasets":
|
20 |
+
results = api.list_datasets(search=query)
|
21 |
+
data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads, "link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results]
|
22 |
+
elif search_type == "Spaces":
|
23 |
+
results = api.list_spaces(search=query)
|
24 |
+
data = [{"id": space.id, "author": space.author, "link": f"https://huggingface.co/spaces/{space.id}"} for space in results]
|
25 |
+
else:
|
26 |
+
data = []
|
27 |
+
|
28 |
+
# Add numbering and format the link
|
29 |
+
for i, item in enumerate(data, 1):
|
30 |
+
item['number'] = i
|
31 |
+
item['formatted_link'] = format_link(item, i, search_type)
|
32 |
+
|
33 |
+
return pd.DataFrame(data)
|
34 |
+
|
35 |
+
def format_link(item: Dict, number: int, search_type: str) -> str:
|
36 |
+
link = item['link']
|
37 |
+
readme_link = f"{link}/blob/main/README.md"
|
38 |
+
title = f"{number}. {item['id']}"
|
39 |
+
|
40 |
+
metadata = f"Author: {item['author']}"
|
41 |
+
if 'downloads' in item:
|
42 |
+
metadata += f", Downloads: {item['downloads']}"
|
43 |
+
|
44 |
+
html = f"""
|
45 |
+
<div style="margin-bottom: 10px;">
|
46 |
+
<strong>{title}</strong><br>
|
47 |
+
<a href="{link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View {search_type[:-1]}</a> |
|
48 |
+
<a href="{readme_link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View README</a><br>
|
49 |
+
<small>{metadata}</small>
|
50 |
+
</div>
|
51 |
+
"""
|
52 |
+
return html
|
53 |
+
|
54 |
+
async def download_readme(session: aiohttp.ClientSession, item: Dict) -> tuple[str, str]:
|
55 |
+
"""Download README.md file for a given item."""
|
56 |
+
item_id = item['id']
|
57 |
+
raw_url = f"https://huggingface.co/{item_id}/raw/main/README.md"
|
58 |
+
try:
|
59 |
+
async with session.get(raw_url) as response:
|
60 |
+
if response.status == 200:
|
61 |
+
content = await response.text()
|
62 |
+
return item_id.replace('/', '_'), content
|
63 |
+
return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nStatus code: {response.status}"
|
64 |
+
except Exception as e:
|
65 |
+
return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nError: {str(e)}"
|
66 |
+
|
67 |
+
async def download_all_readmes(data: List[Dict]) -> str:
|
68 |
+
"""Download all README files and create a zip archive."""
|
69 |
+
zip_buffer = io.BytesIO()
|
70 |
+
|
71 |
+
async with aiohttp.ClientSession() as session:
|
72 |
+
# Download all READMEs concurrently
|
73 |
+
tasks = [download_readme(session, item) for item in data]
|
74 |
+
results = await asyncio.gather(*tasks)
|
75 |
+
|
76 |
+
# Create zip file
|
77 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
78 |
+
for filename, content in results:
|
79 |
+
zip_file.writestr(f"{filename}.md", content)
|
80 |
+
|
81 |
+
# Convert to base64
|
82 |
+
zip_buffer.seek(0)
|
83 |
+
base64_zip = base64.b64encode(zip_buffer.getvalue()).decode()
|
84 |
+
return base64_zip
|
85 |
+
|
86 |
+
def create_download_link(base64_zip: str) -> str:
|
87 |
+
"""Create an HTML download link for the zip file."""
|
88 |
+
download_link = f"""
|
89 |
+
<a href="data:application/zip;base64,{base64_zip}"
|
90 |
+
download="readmes.zip"
|
91 |
+
style="display: inline-block; padding: 10px 20px;
|
92 |
+
background-color: #4CAF50; color: white;
|
93 |
+
text-decoration: none; border-radius: 5px;
|
94 |
+
margin-top: 10px;">
|
95 |
+
📥 Download READMEs Archive
|
96 |
+
</a>
|
97 |
+
"""
|
98 |
+
return download_link
|
99 |
+
|
100 |
+
def display_results(df: pd.DataFrame):
|
101 |
+
if df is not None and not df.empty:
|
102 |
+
html = "<div style='max-height: 400px; overflow-y: auto;'>"
|
103 |
+
for _, row in df.iterrows():
|
104 |
+
html += row['formatted_link']
|
105 |
+
html += "</div>"
|
106 |
+
return html
|
107 |
+
else:
|
108 |
+
return "<p>No results found.</p>"
|
109 |
+
|
110 |
+
def SwarmyTime(data: List[Dict]) -> Dict:
|
111 |
+
"""Aggregates all content from the given data."""
|
112 |
+
aggregated = {
|
113 |
+
"total_items": len(data),
|
114 |
+
"unique_authors": set(),
|
115 |
+
"total_downloads": 0,
|
116 |
+
"item_types": {"Models": 0, "Datasets": 0, "Spaces": 0}
|
117 |
+
}
|
118 |
+
|
119 |
+
for item in data:
|
120 |
+
aggregated["unique_authors"].add(item.get("author", "Unknown"))
|
121 |
+
aggregated["total_downloads"] += item.get("downloads", 0)
|
122 |
+
|
123 |
+
if "modelId" in item:
|
124 |
+
aggregated["item_types"]["Models"] += 1
|
125 |
+
elif "dataset" in item.get("id", ""):
|
126 |
+
aggregated["item_types"]["Datasets"] += 1
|
127 |
+
else:
|
128 |
+
aggregated["item_types"]["Spaces"] += 1
|
129 |
+
|
130 |
+
aggregated["unique_authors"] = len(aggregated["unique_authors"])
|
131 |
+
return aggregated
|
132 |
+
|
133 |
+
with gr.Blocks() as demo:
|
134 |
+
gr.Markdown("## Search the Hugging Face Hub")
|
135 |
+
with gr.Row():
|
136 |
+
search_query = gr.Textbox(label="Search Query", value="awacke1")
|
137 |
+
search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models")
|
138 |
+
search_button = gr.Button("Search")
|
139 |
+
|
140 |
+
results_html = gr.HTML(label="Search Results")
|
141 |
+
download_html = gr.HTML(label="Download Link")
|
142 |
+
metadata_output = gr.Textbox(label="Metadata", lines=10)
|
143 |
+
aggregated_output = gr.JSON(label="Aggregated Content")
|
144 |
+
|
145 |
+
current_results = gr.State([]) # Store current search results
|
146 |
+
|
147 |
+
async def search_and_aggregate(query, search_type):
|
148 |
+
df = search_hub(query, search_type)
|
149 |
+
data = df.to_dict('records')
|
150 |
+
aggregated = SwarmyTime(data)
|
151 |
+
html_results = display_results(df)
|
152 |
+
|
153 |
+
# Create download button
|
154 |
+
download_button = """
|
155 |
+
<button onclick="downloadReadmes()"
|
156 |
+
style="padding: 10px 20px;
|
157 |
+
background-color: #4CAF50;
|
158 |
+
color: white;
|
159 |
+
border: none;
|
160 |
+
border-radius: 5px;
|
161 |
+
cursor: pointer;">
|
162 |
+
📚 Download All READMEs
|
163 |
+
</button>
|
164 |
+
"""
|
165 |
+
|
166 |
+
return html_results, download_button, aggregated, data
|
167 |
+
|
168 |
+
async def download_readmes(data):
|
169 |
+
if not data:
|
170 |
+
return "No results to download"
|
171 |
+
|
172 |
+
base64_zip = await download_all_readmes(data)
|
173 |
+
return create_download_link(base64_zip)
|
174 |
+
|
175 |
+
search_button.click(
|
176 |
+
search_and_aggregate,
|
177 |
+
inputs=[search_query, search_type],
|
178 |
+
outputs=[results_html, download_html, aggregated_output, current_results]
|
179 |
+
)
|
180 |
+
|
181 |
+
# Add download button click handler
|
182 |
+
download_html.click(
|
183 |
+
download_readmes,
|
184 |
+
inputs=[current_results],
|
185 |
+
outputs=[download_html]
|
186 |
+
)
|
187 |
+
|
188 |
+
demo.launch(debug=True)
|