File size: 6,969 Bytes
728ab87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from typing import List, Dict
import httpx
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, ModelCard
import base64
import io
import zipfile
import asyncio
import aiohttp
from pathlib import Path
import emoji

def search_hub(query: str, search_type: str) -> pd.DataFrame:
    api = HfApi()
    if search_type == "Models":
        results = api.list_models(search=query)
        data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads, "link": f"https://huggingface.co/{model.modelId}"} for model in results]
    elif search_type == "Datasets":
        results = api.list_datasets(search=query)
        data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads, "link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results]
    elif search_type == "Spaces":
        results = api.list_spaces(search=query)
        data = [{"id": space.id, "author": space.author, "link": f"https://huggingface.co/spaces/{space.id}"} for space in results]
    else:
        data = []
    
    # Add numbering and format the link
    for i, item in enumerate(data, 1):
        item['number'] = i
        item['formatted_link'] = format_link(item, i, search_type)
    
    return pd.DataFrame(data)

def format_link(item: Dict, number: int, search_type: str) -> str:
    link = item['link']
    readme_link = f"{link}/blob/main/README.md"
    title = f"{number}. {item['id']}"
    
    metadata = f"Author: {item['author']}"
    if 'downloads' in item:
        metadata += f", Downloads: {item['downloads']}"
    
    html = f"""
    <div style="margin-bottom: 10px;">
        <strong>{title}</strong><br>
        <a href="{link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View {search_type[:-1]}</a> | 
        <a href="{readme_link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View README</a><br>
        <small>{metadata}</small>
    </div>
    """
    return html

async def download_readme(session: aiohttp.ClientSession, item: Dict) -> tuple[str, str]:
    """Download README.md file for a given item."""
    item_id = item['id']
    raw_url = f"https://huggingface.co/{item_id}/raw/main/README.md"
    try:
        async with session.get(raw_url) as response:
            if response.status == 200:
                content = await response.text()
                return item_id.replace('/', '_'), content
            return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nStatus code: {response.status}"
    except Exception as e:
        return item_id.replace('/', '_'), f"# Error downloading README for {item_id}\nError: {str(e)}"

async def download_all_readmes(data: List[Dict]) -> str:
    """Download all README files and create a zip archive."""
    zip_buffer = io.BytesIO()
    
    async with aiohttp.ClientSession() as session:
        # Download all READMEs concurrently
        tasks = [download_readme(session, item) for item in data]
        results = await asyncio.gather(*tasks)
        
        # Create zip file
        with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
            for filename, content in results:
                zip_file.writestr(f"{filename}.md", content)
    
    # Convert to base64
    zip_buffer.seek(0)
    base64_zip = base64.b64encode(zip_buffer.getvalue()).decode()
    return base64_zip

def create_download_link(base64_zip: str) -> str:
    """Create an HTML download link for the zip file."""
    download_link = f"""
    <a href="data:application/zip;base64,{base64_zip}" 
       download="readmes.zip" 
       style="display: inline-block; padding: 10px 20px; 
              background-color: #4CAF50; color: white; 
              text-decoration: none; border-radius: 5px;
              margin-top: 10px;">
        📥 Download READMEs Archive
    </a>
    """
    return download_link

def display_results(df: pd.DataFrame):
    if df is not None and not df.empty:
        html = "<div style='max-height: 400px; overflow-y: auto;'>"
        for _, row in df.iterrows():
            html += row['formatted_link']
        html += "</div>"
        return html
    else:
        return "<p>No results found.</p>"

def SwarmyTime(data: List[Dict]) -> Dict:
    """Aggregates all content from the given data."""
    aggregated = {
        "total_items": len(data),
        "unique_authors": set(),
        "total_downloads": 0,
        "item_types": {"Models": 0, "Datasets": 0, "Spaces": 0}
    }

    for item in data:
        aggregated["unique_authors"].add(item.get("author", "Unknown"))
        aggregated["total_downloads"] += item.get("downloads", 0)
        
        if "modelId" in item:
            aggregated["item_types"]["Models"] += 1
        elif "dataset" in item.get("id", ""):
            aggregated["item_types"]["Datasets"] += 1
        else:
            aggregated["item_types"]["Spaces"] += 1

    aggregated["unique_authors"] = len(aggregated["unique_authors"])
    return aggregated

with gr.Blocks() as demo:
    gr.Markdown("## Search the Hugging Face Hub")
    with gr.Row():
        search_query = gr.Textbox(label="Search Query", value="awacke1")
        search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models")
        search_button = gr.Button("Search")
    
    results_html = gr.HTML(label="Search Results")
    download_html = gr.HTML(label="Download Link")
    metadata_output = gr.Textbox(label="Metadata", lines=10)
    aggregated_output = gr.JSON(label="Aggregated Content")
    
    current_results = gr.State([])  # Store current search results

    async def search_and_aggregate(query, search_type):
        df = search_hub(query, search_type)
        data = df.to_dict('records')
        aggregated = SwarmyTime(data)
        html_results = display_results(df)
        
        # Create download button
        download_button = """
        <button onclick="downloadReadmes()" 
                style="padding: 10px 20px; 
                       background-color: #4CAF50; 
                       color: white; 
                       border: none; 
                       border-radius: 5px; 
                       cursor: pointer;">
            📚 Download All READMEs
        </button>
        """
        
        return html_results, download_button, aggregated, data

    async def download_readmes(data):
        if not data:
            return "No results to download"
        
        base64_zip = await download_all_readmes(data)
        return create_download_link(base64_zip)

    search_button.click(
        search_and_aggregate,
        inputs=[search_query, search_type],
        outputs=[results_html, download_html, aggregated_output, current_results]
    )

    # Add download button click handler
    download_html.click(
        download_readmes,
        inputs=[current_results],
        outputs=[download_html]
    )

demo.launch(debug=True)