model-evaluator / app.py
lewtun's picture
lewtun HF staff
Add query based selection
d7705b9
raw
history blame
8.02 kB
import os
from pathlib import Path
import streamlit as st
from datasets import get_dataset_config_names
from dotenv import load_dotenv
from huggingface_hub import list_datasets
from utils import get_compatible_models, get_metadata, http_get, http_post
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
TASK_TO_ID = {
"binary_classification": 1,
"multi_class_classification": 2,
# "multi_label_classification": 3, # Not fully supported in AutoTrain
"entity_extraction": 4,
"extractive_question_answering": 5,
"translation": 6,
"summarization": 8,
"single_column_regression": 10,
}
AUTOTRAIN_TASK_TO_HUB_TASK = {
"binary_classification": "text-classification",
"multi_class_classification": "text-classification",
# "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
"entity_extraction": "token-classification",
"extractive_question_answering": "question-answering",
"translation": "translation",
"summarization": "summarization",
"single_column_regression": 10,
}
###########
### APP ###
###########
st.title("Evaluation as a Service")
st.markdown(
"""
Welcome to Hugging Face's Evaluation as a Service! This application allows
you to evaluate any πŸ€— Transformers model with a dataset on the Hub. Please
select the dataset and configuration below. The results of your evaluation
will be displayed on the public leaderboard
[here](https://huggingface.co/spaces/autoevaluate/leaderboards).
"""
)
all_datasets = [d.id for d in list_datasets()]
query_params = st.experimental_get_query_params()
default_dataset = all_datasets[0]
if "dataset" in query_params:
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
default_dataset = query_params["dataset"][0]
selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
# TODO: remove this step once we select real datasets
# Strip out original dataset name
# original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
# In general this will be a list of multiple configs => need to generalise logic here
metadata = get_metadata(selected_dataset)
print(metadata)
if metadata is None:
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
with st.expander("Advanced configuration"):
## Select task
selected_task = st.selectbox("Select a task", list(AUTOTRAIN_TASK_TO_HUB_TASK.values()))
### Select config
configs = get_dataset_config_names(selected_dataset)
selected_config = st.selectbox("Select a config", configs)
## Select splits
splits_resp = http_get(path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset})
if splits_resp.status_code == 200:
split_names = []
all_splits = splits_resp.json()
print(all_splits)
for split in all_splits["splits"]:
print(selected_config)
if split["config"] == selected_config:
split_names.append(split["split"])
selected_split = st.selectbox("Select a split", split_names) # , index=split_names.index(eval_split))
## Show columns
rows_resp = http_get(
path="/rows",
domain="https://datasets-preview.huggingface.tech",
params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
).json()
columns = rows_resp["columns"]
col_names = []
for c in columns:
col_names.append(c["column"]["name"])
# splits = metadata[0]["splits"]
# split_names = list(splits.values())
# eval_split = splits.get("eval_split", split_names[0])
# selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))
# TODO: add a function to handle the mapping task <--> column mapping
# col_mapping = metadata[0]["col_mapping"]
# col_names = list(col_mapping.keys())
# TODO: figure out how to get all dataset column names (i.e. features) without download dataset itself
st.markdown("**Map your data columns**")
col1, col2 = st.columns(2)
# TODO: find a better way to layout these items
# TODO: propagate this information to payload
# TODO: make it task specific
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
st.selectbox("This column should contain the text you want to classify", col_names, index=0)
st.selectbox("This column should contain the labels you want to assign to the text", col_names, index=1)
with st.form(key="form"):
compatible_models = get_compatible_models(selected_task, selected_dataset)
selected_models = st.multiselect(
"Select the models you wish to evaluate", compatible_models
) # , compatible_models[0])
print(selected_models)
submit_button = st.form_submit_button("Make submission")
# if submit_button:
# for model in selected_models:
# payload = {
# "username": AUTOTRAIN_USERNAME,
# "task": TASK_TO_ID[metadata[0]["task_id"]],
# "model": model,
# "col_mapping": metadata[0]["col_mapping"],
# "split": selected_split,
# "dataset": original_dataset_name,
# "config": selected_config,
# }
# json_resp = http_post(
# path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
# ).json()
# if json_resp["status"] == 1:
# st.success(f"βœ… Successfully submitted model {model} for evaluation with job ID {json_resp['id']}")
# st.markdown(
# f"""
# Evaluation takes appoximately 1 hour to complete, so grab a β˜• or 🍡 while you wait:
# * πŸ“Š Click [here](https://huggingface.co/spaces/huggingface/leaderboards) to view the results from your submission
# """
# )
# else:
# st.error("πŸ™ˆ Oh noes, there was an error submitting your submission!")
# st.write("Creating project!")
# payload = {
# "username": AUTOTRAIN_USERNAME,
# "proj_name": "my-eval-project-1",
# "task": TASK_TO_ID[metadata[0]["task_id"]],
# "config": {
# "language": "en",
# "max_models": 5,
# "instance": {
# "provider": "aws",
# "instance_type": "ml.g4dn.4xlarge",
# "max_runtime_seconds": 172800,
# "num_instances": 1,
# "disk_size_gb": 150,
# },
# },
# }
# json_resp = http_post(
# path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
# ).json()
# # print(json_resp)
# # st.write("Uploading data")
# payload = {
# "split": 4,
# "col_mapping": metadata[0]["col_mapping"],
# "load_config": {"max_size_bytes": 0, "shuffle": False},
# }
# json_resp = http_post(
# path="/projects/522/data/emotion",
# payload=payload,
# token=HF_TOKEN,
# domain=AUTOTRAIN_BACKEND_API,
# params={"type": "dataset", "config_name": "default", "split_name": "train"},
# ).json()
# print(json_resp)
# st.write("Training")
# json_resp = http_get(
# path="/projects/522/data/start_process", token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
# ).json()
# print(json_resp)