lewtun HF staff commited on
Commit
d7705b9
Β·
1 Parent(s): 2c1e7f8

Add query based selection

Browse files
Files changed (2) hide show
  1. app.py +53 -50
  2. requirements.txt +1 -0
app.py CHANGED
@@ -20,7 +20,7 @@ DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
20
  TASK_TO_ID = {
21
  "binary_classification": 1,
22
  "multi_class_classification": 2,
23
- "multi_label_classification": 3,
24
  "entity_extraction": 4,
25
  "extractive_question_answering": 5,
26
  "translation": 6,
@@ -31,7 +31,7 @@ TASK_TO_ID = {
31
  AUTOTRAIN_TASK_TO_HUB_TASK = {
32
  "binary_classification": "text-classification",
33
  "multi_class_classification": "text-classification",
34
- "multi_label_classification": "text-classification",
35
  "entity_extraction": "token-classification",
36
  "extractive_question_answering": "question-answering",
37
  "translation": "translation",
@@ -39,9 +39,6 @@ AUTOTRAIN_TASK_TO_HUB_TASK = {
39
  "single_column_regression": 10,
40
  }
41
 
42
- # TODO: remove this hardcorded logic and accept any dataset on the Hub
43
- # DATASETS_TO_EVALUATE = ["emotion", "conll2003", "imdb", "squad", "xsum", "ncbi_disease", "go_emotions"]
44
-
45
  ###########
46
  ### APP ###
47
  ###########
@@ -52,13 +49,19 @@ st.markdown(
52
  you to evaluate any πŸ€— Transformers model with a dataset on the Hub. Please
53
  select the dataset and configuration below. The results of your evaluation
54
  will be displayed on the public leaderboard
55
- [here](https://huggingface.co/spaces/huggingface/leaderboards).
56
  """
57
  )
58
 
59
  all_datasets = [d.id for d in list_datasets()]
60
- selected_dataset = st.selectbox("Select a dataset", all_datasets)
61
- print(f"Dataset name: {selected_dataset}")
 
 
 
 
 
 
62
 
63
  # TODO: remove this step once we select real datasets
64
  # Strip out original dataset name
@@ -165,45 +168,45 @@ with st.form(key="form"):
165
  # else:
166
  # st.error("πŸ™ˆ Oh noes, there was an error submitting your submission!")
167
 
168
- # st.write("Creating project!")
169
- # payload = {
170
- # "username": AUTOTRAIN_USERNAME,
171
- # "proj_name": "my-eval-project-1",
172
- # "task": TASK_TO_ID[metadata[0]["task_id"]],
173
- # "config": {
174
- # "language": "en",
175
- # "max_models": 5,
176
- # "instance": {
177
- # "provider": "aws",
178
- # "instance_type": "ml.g4dn.4xlarge",
179
- # "max_runtime_seconds": 172800,
180
- # "num_instances": 1,
181
- # "disk_size_gb": 150,
182
- # },
183
- # },
184
- # }
185
- # json_resp = http_post(
186
- # path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
187
- # ).json()
188
- # # print(json_resp)
189
-
190
- # # st.write("Uploading data")
191
- # payload = {
192
- # "split": 4,
193
- # "col_mapping": metadata[0]["col_mapping"],
194
- # "load_config": {"max_size_bytes": 0, "shuffle": False},
195
- # }
196
- # json_resp = http_post(
197
- # path="/projects/522/data/emotion",
198
- # payload=payload,
199
- # token=HF_TOKEN,
200
- # domain=AUTOTRAIN_BACKEND_API,
201
- # params={"type": "dataset", "config_name": "default", "split_name": "train"},
202
- # ).json()
203
- # print(json_resp)
204
-
205
- # st.write("Training")
206
- # json_resp = http_get(
207
- # path="/projects/522/data/start_process", token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
208
- # ).json()
209
- # print(json_resp)
 
20
  TASK_TO_ID = {
21
  "binary_classification": 1,
22
  "multi_class_classification": 2,
23
+ # "multi_label_classification": 3, # Not fully supported in AutoTrain
24
  "entity_extraction": 4,
25
  "extractive_question_answering": 5,
26
  "translation": 6,
 
31
  AUTOTRAIN_TASK_TO_HUB_TASK = {
32
  "binary_classification": "text-classification",
33
  "multi_class_classification": "text-classification",
34
+ # "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
35
  "entity_extraction": "token-classification",
36
  "extractive_question_answering": "question-answering",
37
  "translation": "translation",
 
39
  "single_column_regression": 10,
40
  }
41
 
 
 
 
42
  ###########
43
  ### APP ###
44
  ###########
 
49
  you to evaluate any πŸ€— Transformers model with a dataset on the Hub. Please
50
  select the dataset and configuration below. The results of your evaluation
51
  will be displayed on the public leaderboard
52
+ [here](https://huggingface.co/spaces/autoevaluate/leaderboards).
53
  """
54
  )
55
 
56
  all_datasets = [d.id for d in list_datasets()]
57
+ query_params = st.experimental_get_query_params()
58
+ default_dataset = all_datasets[0]
59
+ if "dataset" in query_params:
60
+ if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
61
+ default_dataset = query_params["dataset"][0]
62
+
63
+ selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
64
+ st.experimental_set_query_params(**{"dataset": [selected_dataset]})
65
 
66
  # TODO: remove this step once we select real datasets
67
  # Strip out original dataset name
 
168
  # else:
169
  # st.error("πŸ™ˆ Oh noes, there was an error submitting your submission!")
170
 
171
+ # st.write("Creating project!")
172
+ # payload = {
173
+ # "username": AUTOTRAIN_USERNAME,
174
+ # "proj_name": "my-eval-project-1",
175
+ # "task": TASK_TO_ID[metadata[0]["task_id"]],
176
+ # "config": {
177
+ # "language": "en",
178
+ # "max_models": 5,
179
+ # "instance": {
180
+ # "provider": "aws",
181
+ # "instance_type": "ml.g4dn.4xlarge",
182
+ # "max_runtime_seconds": 172800,
183
+ # "num_instances": 1,
184
+ # "disk_size_gb": 150,
185
+ # },
186
+ # },
187
+ # }
188
+ # json_resp = http_post(
189
+ # path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
190
+ # ).json()
191
+ # # print(json_resp)
192
+
193
+ # # st.write("Uploading data")
194
+ # payload = {
195
+ # "split": 4,
196
+ # "col_mapping": metadata[0]["col_mapping"],
197
+ # "load_config": {"max_size_bytes": 0, "shuffle": False},
198
+ # }
199
+ # json_resp = http_post(
200
+ # path="/projects/522/data/emotion",
201
+ # payload=payload,
202
+ # token=HF_TOKEN,
203
+ # domain=AUTOTRAIN_BACKEND_API,
204
+ # params={"type": "dataset", "config_name": "default", "split_name": "train"},
205
+ # ).json()
206
+ # print(json_resp)
207
+
208
+ # st.write("Training")
209
+ # json_resp = http_get(
210
+ # path="/projects/522/data/start_process", token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
211
+ # ).json()
212
+ # print(json_resp)
requirements.txt CHANGED
@@ -1,2 +1,3 @@
1
  huggingface-hub==0.4.0
2
  python-dotenv
 
 
1
  huggingface-hub==0.4.0
2
  python-dotenv
3
+ streamlit==1.2.0