File size: 13,980 Bytes
1457d21
d1feb02
238735e
1457d21
a0d1776
3b4e6ce
1457d21
238735e
2c0ffed
1457d21
 
 
 
238735e
 
 
 
 
ae495a3
238735e
 
 
 
 
 
 
 
 
 
 
 
 
1457d21
c42190b
1457d21
238735e
 
 
 
c42190b
1457d21
 
 
 
365213e
 
 
 
 
 
 
 
 
 
c42190b
 
 
 
2c5adce
365213e
 
 
 
 
 
 
2dc9347
1457d21
 
 
238735e
 
a0d1776
2c5adce
238735e
1457d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365213e
c9efba3
1457d21
2dc9347
1457d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238735e
 
 
1457d21
 
238735e
1457d21
 
238735e
 
1457d21
 
 
 
2c5adce
 
ae495a3
 
 
365213e
ae495a3
238735e
 
 
a0d1776
238735e
 
05783f8
 
 
 
a0d1776
 
 
 
238735e
1b82d4c
1457d21
 
 
 
 
2c5adce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
036df68
 
 
 
 
2c5adce
365213e
c42190b
ae239a7
2dc9347
1457d21
365213e
2c5adce
 
036df68
 
2c5adce
1457d21
 
 
2dc9347
 
c42190b
365213e
c42190b
c9efba3
 
 
 
 
c42190b
c9efba3
 
 
2dc9347
c9efba3
 
 
2dc9347
 
3b4e6ce
2dc9347
3b4e6ce
ae495a3
 
365213e
8d2591b
3a7ead9
 
 
c9efba3
1457d21
c9efba3
 
2c5adce
1457d21
2c5adce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import json
import os.path
from utils.references import References
from utils.knowledge import Knowledge
from utils.file_operations import hash_name, make_archive, copy_templates
from utils.tex_processing import create_copies
from section_generator import section_generation  # figures_generation, section_generation_bg, keywords_generation,
import logging
import time
from langchain.vectorstores import FAISS
from utils.gpt_interaction import GPTModel
from utils.prompts import SYSTEM
from models import EMBEDDINGS

TOTAL_TOKENS = 0
TOTAL_PROMPTS_TOKENS = 0
TOTAL_COMPLETION_TOKENS = 0


def log_usage(usage, generating_target, print_out=True):
    global TOTAL_TOKENS
    global TOTAL_PROMPTS_TOKENS
    global TOTAL_COMPLETION_TOKENS

    prompts_tokens = usage['prompt_tokens']
    completion_tokens = usage['completion_tokens']
    total_tokens = usage['total_tokens']

    TOTAL_TOKENS += total_tokens
    TOTAL_PROMPTS_TOKENS += prompts_tokens
    TOTAL_COMPLETION_TOKENS += completion_tokens

    message = f">>USAGE>> For generating {generating_target}, {total_tokens} tokens have been used " \
              f"({prompts_tokens} for prompts; {completion_tokens} for completion). " \
              f"{TOTAL_TOKENS} tokens have been used in total."
    if print_out:
        print(message)
    logging.info(message)


def _generation_setup(title, description="", template="ICLR2022",
                      tldr=False, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048,  # generating references
                      knowledge_database=None, max_tokens_kd=2048, query_counts=10,  # querying from knowledge database
                      debug=True):
    """
    This function handles the setup process for paper generation; it contains three folds
        1. Copy the template to the outputs folder. Create the log file `generation.log`
        2. Collect references based on the given `title` and `description`
        3. Generate the basic `paper` object (a dictionary)

    Parameters:
        title (str): The title of the paper.
        description (str, optional): A short description or abstract for the paper. Defaults to an empty string.
        template (str, optional): The template to be used for paper generation. Defaults to "ICLR2022".
        tldr (bool, optional): A flag indicating whether a TL;DR (Too Long; Didn't Read) summary should be used
                               for the collected papers. Defaults to False.
        max_kw_refs (int, optional): The maximum number of references that can be associated with each keyword.
                                     Defaults to 10.
        bib_refs (path to a bibtex file, optional).

    Returns:
    tuple: A tuple containing the following elements:
        - paper (dict): A dictionary containing the generated paper information.
        - destination_folder (str): The path to the destination folder where the generation log is saved.
        - all_paper_ids (list): A list of all paper IDs collected for the references.
    """
    # print("Generation setup...")
    # paper = {}
    # paper_body = {}
    llm = GPTModel()

    # Create a copy in the outputs folder.
    bibtex_path, destination_folder = copy_templates(template, title)
    logging.basicConfig(level=logging.INFO, filename=os.path.join(destination_folder, "generation.log"))

    ###################################################################################################################
    # Generate contributions
    ###################################################################################################################
    if description:
        contributions = description
    else:
        try:
            contributions, usage = llm(systems=SYSTEM["contributions"], prompts=title, return_json=True)
            contributions = [f"Contribution {idx}: {contributions[contribution]['statement']}\n" \
                             f"Novelty of Contribution {idx}: {contributions[contribution]['reason']}\n"
                             for idx, contribution in enumerate(contributions)]
            contributions = "".join(contributions)
            log_usage(usage, "contributions")
        except RuntimeError:
            if debug:
                raise RuntimeError("Failed to generate contributions.")
            else:
                print("Failed to generate contributions. Use empty contributions.")
                contributions = ""
    print("Contributions:\n{}".format(contributions))
    ###################################################################################################################
    # Generate references
    ###################################################################################################################
    # input_dict = {"title": title, "description": description}
    # keywords, usage = keywords_generation(input_dict)
    # log_usage(usage, "keywords")
    try:
        keywords, usage = llm(systems=SYSTEM["keywords"], prompts=title, return_json=True)
        log_usage(usage, "keywords")
        keywords = {keyword: max_kw_refs for keyword in keywords}
    except RuntimeError:
        if debug:
            raise RuntimeError("Failed to generate keywords.")
        else:
            print("Failed to generate keywords. Use default keywords.")
            keywords = {"machine learning": max_kw_refs, "artificial intelligence": max_kw_refs}  # DEFAULT KEYWORDS
    # generate keywords dictionary
    # keywords = {keyword: max_kw_refs for keyword in keywords}

    print("Keywords: \n", keywords)
    # todo: in some rare situations, collected papers will be an empty list. handle this issue
    ref = References(title, bib_refs)
    ref.collect_papers(keywords, tldr=tldr)
    references = ref.to_prompts(max_tokens=max_tokens_ref)
    all_paper_ids = ref.to_bibtex(bibtex_path)
    ###################################################################################################################
    # Generate domain knowledge
    ###################################################################################################################
    prompts = f"Title: {title}\n Contributions: {contributions}"
    preliminaries_kw, _ = llm(systems=SYSTEM["preliminaries"], prompts=prompts)
    # check if the database exists or not
    db_path = f"knowledge_databases/{knowledge_database}"
    db_config_path = os.path.join(db_path, "db_meta.json")
    db_index_path = os.path.join(db_path, "faiss_index")
    if os.path.isdir(db_path):
        try:
            # load configuration file
            with open(db_config_path, "r", encoding="utf-8") as f:
                db_config = json.load(f)
            model_name = db_config["embedding_model"]
            embeddings = EMBEDDINGS[model_name]
            db = FAISS.load_local(db_index_path, embeddings)
            knowledge = Knowledge(db=db)
            knowledge.collect_knowledge(preliminaries_kw, max_query=query_counts)
            domain_knowledge = knowledge.to_prompts(max_tokens_kd)
        except Exception as e:
            if debug:
                raise RuntimeError(f"Failed to query from FAISS. Error {e}.")
            else:
                print(f"Failed to query from FAISS. Error {e}. Use empty domain knowledge instead.")
                domain_knowledge = ""
    else:
        domain_knowledge = ""

    ###################################################################################################################
    # Generate necessary media
    ###################################################################################################################
    prompts = f"Title: {title}\n Contributions: {contributions}"
    try:
        components, usage = llm(systems=SYSTEM["components"], prompts=prompts, return_json=True)
        log_usage(usage, "media")
    except RuntimeError:
        if debug:
            raise RuntimeError("Failed to generate media.")
        else:
            print("Failed to generate media. Use default media.")
            components = {}

    print(f"The paper information has been initialized. References are saved to {bibtex_path}.")

    paper = {}
    paper_body = {}
    paper["title"] = title
    paper["description"] = contributions
    paper["references"] = references
    paper["body"] = paper_body
    paper["bibtex"] = bibtex_path
    paper["domain_knowledge"] = domain_knowledge
    paper["components"] = components

    # print(json.dumps(paper, indent=4))
    return paper, destination_folder, all_paper_ids
    # todo: use `all_paper_ids` to check if all citations are in this list


def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"):
    # todo: to match the current generation setup
    paper, destination_folder, _ = _generation_setup(title, description, template, model)

    for section in ["introduction", "related works", "backgrounds"]:
        try:
            usage = section_generation_bg(paper, section, destination_folder, model=model)
            log_usage(usage, section)
        except Exception as e:
            message = f"Failed to generate {section}. {type(e).__name__} was raised:  {e}"
            print(message)
            logging.info(message)
    print(f"The paper '{title}' has been generated. Saved to {destination_folder}.")

    input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"}
    filename = hash_name(input_dict) + ".zip"
    return make_archive(destination_folder, filename)


def generate_draft(title, description="", # main input
                   tldr=True, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048,  # references
                   knowledge_database=None, max_tokens_kd=2048, query_counts=10, # domain knowledge
                   sections=None, model="gpt-4", template="ICLR2022", prompts_mode=False, # outputs parameters
                   ):
    """
    This function generates a draft paper using the provided information; it contains three steps: 1. Pre-processing:
    Initializes the setup for paper generation and filters the sections to be included in the paper. 2. Processing:
    Generates each section of the paper. 3. Post-processing: Creates backup copies of the paper and returns the paper
    in a zipped format.

    Parameters:
        title (str): The title of the paper.
        description (str, optional): A short description or abstract for the paper. Defaults to an empty string.
        template (str, optional): The template to be used for paper generation. Defaults to "ICLR2022".
        tldr (bool, optional): A flag indicating whether a TL;DR (Too Long; Didn't Read) summary should be used
                               for the collected papers. Defaults to True.
        max_kw_refs (int, optional): The maximum number of references that can be associated with each keyword.
                                     Defaults to 10.
        sections (list, optional): The sections to be included in the paper. If not provided, all the standard
                                   sections are included.
        bib_refs (path to a bibtex file, optional).
        model (str, optional): The language model to be used for paper generation. Defaults to "gpt-4".

    Returns:
    str: The path to the zipped file containing the generated paper and associated files.

    Note: The function also handles errors that occur during section generation and retries a maximum of 4 times
    before proceeding.
    """

    def _filter_sections(sections):
        ordered_sections = ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion",
                            "abstract"]
        return [section for section in ordered_sections if section in sections]

    # pre-processing `sections` parameter;
    print("================START================")
    print(f"Generating the paper '{title}'.")
    print("================PRE-PROCESSING================")
    # make `sections` in a correct order
    if sections is None:
        sections = ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion",
                    "abstract"]
    else:
        sections = _filter_sections(sections)
    paper, destination_folder, _ = _generation_setup(title, description, template, tldr, max_kw_refs, bib_refs,
                                                     max_tokens_ref=max_tokens_ref, max_tokens_kd=max_tokens_kd,
                                                     query_counts=query_counts,
                                                     knowledge_database=knowledge_database)

    # main components
    print(f"================PROCESSING================")
    for section in sections:
        print(f"Generate {section} part...")
        max_attempts = 4
        attempts_count = 0
        while attempts_count < max_attempts:
            try:
                usage = section_generation(paper, section, destination_folder, model=model)
                print(f"{section} part has been generated. ")
                log_usage(usage, section)
                break
            except Exception as e:
                message = f"Failed to generate {section}. {type(e).__name__} was raised:  {e}\n"
                print(message)
                logging.info(message)
                attempts_count += 1
                time.sleep(15)

    # post-processing
    print("================POST-PROCESSING================")
    create_copies(destination_folder)
    input_dict = {"title": title, "description": description, "generator": "generate_draft"}
    filename = hash_name(input_dict) + ".zip"
    print("\nMission completed.\n")
    return make_archive(destination_folder, filename)


if __name__ == "__main__":
    import openai

    openai.api_key = os.getenv("OPENAI_API_KEY")

    target_title = "Playing Atari with Decentralized Reinforcement Learning"
    output = generate_draft(target_title, knowledge_database="ml_textbook_test")
    print(output)