File size: 4,658 Bytes
238735e
a0d1776
ae495a3
238735e
 
 
 
 
 
ae495a3
238735e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae495a3
05783f8
 
 
238735e
 
 
 
a0d1776
 
238735e
 
 
a0d1776
 
 
238735e
 
ae495a3
238735e
ae495a3
238735e
 
 
 
 
6fe5041
238735e
 
ae495a3
 
 
 
 
 
238735e
 
 
a0d1776
238735e
 
05783f8
 
 
 
a0d1776
 
 
 
238735e
1b82d4c
a0d1776
1b82d4c
 
 
ae495a3
a0d1776
1b82d4c
ae495a3
 
 
 
 
4a233ea
 
 
 
ae495a3
 
4a233ea
ae495a3
 
 
 
05783f8
 
 
ae495a3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from utils.references import References
from utils.file_operations import hash_name, make_archive, copy_templates
from section_generator import section_generation_bg, keywords_generation, figures_generation, section_generation
import logging

TOTAL_TOKENS = 0
TOTAL_PROMPTS_TOKENS = 0
TOTAL_COMPLETION_TOKENS = 0


def log_usage(usage, generating_target, print_out=True):
    global TOTAL_TOKENS
    global TOTAL_PROMPTS_TOKENS
    global TOTAL_COMPLETION_TOKENS

    prompts_tokens = usage['prompt_tokens']
    completion_tokens = usage['completion_tokens']
    total_tokens = usage['total_tokens']

    TOTAL_TOKENS += total_tokens
    TOTAL_PROMPTS_TOKENS += prompts_tokens
    TOTAL_COMPLETION_TOKENS += completion_tokens

    message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \
              f"{TOTAL_TOKENS} tokens have been used in total."
    if print_out:
        print(message)
    logging.info(message)

def _generation_setup(title, description="", template="ICLR2022", model="gpt-4"):
    '''
    todo: use `model` to control which model to use; may use another method to generate keywords or collect references
    '''
    paper = {}
    paper_body = {}

    # Create a copy in the outputs folder.
    bibtex_path, destination_folder = copy_templates(template, title)
    logging.basicConfig(level=logging.INFO, filename=destination_folder + "/generation.log")

    # Generate keywords and references
    print("Initialize the paper information ...")
    input_dict = {"title": title, "description": description}
    keywords, usage = keywords_generation(input_dict, model="gpt-3.5-turbo")
    print(f"keywords: {keywords}")
    log_usage(usage, "keywords")

    ref = References(load_papers="")
    ref.collect_papers(keywords, method="arxiv")
    all_paper_ids = ref.to_bibtex(bibtex_path)  # todo: this will used to check if all citations are in this list

    print(f"The paper information has been initialized. References are saved to {bibtex_path}.")

    paper["title"] = title
    paper["description"] = description
    paper["references"] = ref.to_prompts()
    paper["body"] = paper_body
    paper["bibtex"] = bibtex_path
    return paper, destination_folder, all_paper_ids



def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"):
    paper, destination_folder, _ = _generation_setup(title, description, template, model)

    for section in ["introduction", "related works", "backgrounds"]:
        try:
            usage = section_generation_bg(paper, section, destination_folder, model=model)
            log_usage(usage, section)
        except Exception as e:
            message = f"Failed to generate {section}. {type(e).__name__} was raised:  {e}"
            print(message)
            logging.info(message)
    print(f"The paper '{title}' has been generated. Saved to {destination_folder}.")

    input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"}
    filename = hash_name(input_dict) + ".zip"
    return make_archive(destination_folder, filename)


def fake_generator(title, description="", template="ICLR2022", model="gpt-4"):
    """
    This function is used to test the whole pipeline without calling OpenAI API.
    """
    input_dict = {"title": title, "description": description, "generator": "generate_draft"}
    filename = hash_name(input_dict) + ".zip"
    return make_archive("sample-output.pdf", filename)


def generate_draft(title, description="", template="ICLR2022", model="gpt-4"):
    paper, destination_folder, _ = _generation_setup(title, description, template, model)

    # todo: `list_of_methods` failed to be generated; find a solution ...
    # print("Generating figures ...")
    # usage = figures_generation(paper, destination_folder, model="gpt-3.5-turbo")
    # log_usage(usage, "figures")

    # for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]:
    for section in ["introduction", "related works", "backgrounds", "abstract"]:
        try:
            usage = section_generation(paper, section, destination_folder, model=model)
            log_usage(usage, section)
        except Exception as e:
            message = f"Failed to generate {section}. {type(e).__name__} was raised:  {e}"
            print(message)
            logging.info(message)

    input_dict = {"title": title, "description": description, "generator": "generate_draft"}
    filename = hash_name(input_dict) + ".zip"
    return make_archive(destination_folder, filename)