Spaces:
Running
Running
File size: 13,159 Bytes
8e698eb fb8c051 8e698eb fb8c051 8ef9348 a7f1695 3a7ead9 a7f1695 3a7ead9 8e698eb 3a7ead9 8ef9348 8e698eb a7f1695 3a7ead9 a7f1695 3a7ead9 8ef9348 3a7ead9 8ef9348 295e94f 3a7ead9 a7f1695 295e94f a7f1695 3a7ead9 8ef9348 3a7ead9 8e698eb 8ef9348 3a7ead9 8ef9348 3a7ead9 8e698eb 3a7ead9 8e698eb 8ef9348 3a7ead9 8ef9348 a7f1695 3a7ead9 a7f1695 3a7ead9 fb8c051 3a7ead9 fb8c051 a6aecff fb8c051 8aec19e fb8c051 8ef9348 a7f1695 8ef9348 a7f1695 8ef9348 fb8c051 8ef9348 fb8c051 8e698eb fb8c051 3a7ead9 fb8c051 8ef9348 3a7ead9 fb8c051 3a7ead9 fb8c051 8aec19e fb8c051 4e7254f fb8c051 a6aecff 8ef9348 a6aecff 8e698eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# Each `paper` is a dictionary containing:
# (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal
#
# Generate references:
# `Reference` class:
# 1. Read a given .bib file to collect papers; use `search_paper_abstract` method to fill missing abstract.
# 2. Given some keywords; use ArXiv or Semantic Scholar API to find papers.
# 3. Generate bibtex from the selected papers. --> to_bibtex()
# 4. Generate prompts from the selected papers: --> to_prompts()
# A sample prompt: {"paper_id": "paper summary"}
import requests
import re
import bibtexparser
from scholarly import scholarly
from scholarly import ProxyGenerator
######################################################################################################################
# Some basic tools
######################################################################################################################
def remove_newlines(serie):
# This function is applied to the abstract of each paper to reduce the length of prompts.
serie = serie.replace('\n', ' ')
serie = serie.replace('\\n', ' ')
serie = serie.replace(' ', ' ')
serie = serie.replace(' ', ' ')
return serie
def search_paper_abstract(title):
pg = ProxyGenerator()
success = pg.ScraperAPI("921b16f94d701308b9d9b4456ddde155")
scholarly.use_proxy(pg)
# input the title of a paper, return its abstract
search_query = scholarly.search_pubs(title)
paper = next(search_query)
return remove_newlines(paper['bib']['abstract'])
def load_papers_from_bibtex(bib_file_path):
with open(bib_file_path) as bibtex_file:
bib_database = bibtexparser.load(bibtex_file)
if len(bib_database.entries) == 0:
return []
else:
bib_papers = []
for bibitem in bib_database.entries:
paper_id = bibitem.get("ID")
title = bibitem.get("title")
if title is None:
continue
journal = bibitem.get("journal")
year = bibitem.get("year")
author = bibitem.get("author")
abstract = bibitem.get("abstract")
if abstract is None:
abstract = search_paper_abstract(title)
result = {
"paper_id": paper_id,
"title": title,
"link": "",
"abstract": abstract,
"authors": author,
"year": year,
"journal": journal
}
bib_papers.append(result)
return bib_papers
######################################################################################################################
# Semantic Scholar (SS) API
######################################################################################################################
def ss_search(keywords, limit=20, fields=None):
# space between the query to be removed and replaced with +
if fields is None:
fields = ["title", "abstract", "venue", "year", "authors", "tldr", "embedding", "externalIds"]
keywords = keywords.lower()
keywords = keywords.replace(" ", "+")
url = f'https://api.semanticscholar.org/graph/v1/paper/search?query={keywords}&limit={limit}&fields={",".join(fields)}'
# headers = {"Accept": "*/*", "x-api-key": constants.S2_KEY}
headers = {"Accept": "*/*"}
response = requests.get(url, headers=headers, timeout=30)
return response.json()
def _collect_papers_ss(keyword, counts=3, tldr=False):
def externalIds2link(externalIds):
# Sample externalIds:
# "{'MAG': '2932819148', 'DBLP': 'conf/icml/HaarnojaZAL18', 'ArXiv': '1801.01290', 'CorpusId': 28202810}"
if externalIds:
# Supports ArXiv, MAG, ACL, PubMed, Medline, PubMedCentral, DBLP, DOI
# priority: DBLP > arXiv > (todo: MAG > CorpusId > DOI > ACL > PubMed > Mdeline > PubMedCentral)
# DBLP
dblp_id = externalIds.get('DBLP')
if dblp_id is not None:
dblp_link = f"dblp.org/rec/{dblp_id}"
return dblp_link
# arXiv
arxiv_id = externalIds.get('ArXiv')
if arxiv_id is not None:
arxiv_link = f"arxiv.org/abs/{arxiv_id}"
return arxiv_link
return ""
else:
# if this is an empty dictionary, return an empty string
return ""
def extract_paper_id(last_name, year_str, title):
pattern = r'^\w+'
words = re.findall(pattern, title)
# return last_name + year_str + title.split(' ', 1)[0]
try:
output = last_name + year_str + words[0]
except IndexError:
output = last_name + year_str + title[:4]
return output
def extract_author_info(raw_authors):
authors = [author['name'] for author in raw_authors]
authors_str = " and ".join(authors)
try:
last_name = authors[0].split()[-1]
except IndexError:
last_name = "ma"
# pattern = r'^\w+'
# last_name = re.findall(pattern, authors[0])
return authors_str, last_name
def parse_search_results(search_results_ss):
# turn the search result to a list of paper dictionary.
papers_ss = []
for raw_paper in search_results_ss:
if raw_paper["abstract"] is None:
continue
authors_str, last_name = extract_author_info(raw_paper['authors'])
year_str = str(raw_paper['year'])
title = raw_paper['title']
# some journal may contain &; replace it. e.g. journal={IEEE Power & Energy Society General Meeting}
journal = raw_paper['venue'].replace("&", "\\&")
if not journal:
journal = "arXiv preprint"
paper_id = extract_paper_id(last_name, year_str, title).lower()
link = externalIds2link(raw_paper['externalIds'])
if tldr and raw_paper['tldr'] is not None:
abstract = raw_paper['tldr']['text']
else:
abstract = remove_newlines(raw_paper['abstract'])
result = {
"paper_id": paper_id,
"title": title,
"abstract": abstract,
"link": link,
"authors": authors_str,
"year": year_str,
"journal": journal
}
papers_ss.append(result)
return papers_ss
raw_results = ss_search(keyword, limit=counts)
if raw_results is not None:
search_results = raw_results['data']
else:
search_results = []
results = parse_search_results(search_results)
return results
######################################################################################################################
# ArXiv API
######################################################################################################################
def _collect_papers_arxiv(keyword, counts=3, tldr=False):
# Build the arXiv API query URL with the given keyword and other parameters
def build_query_url(keyword, results_limit=3, sort_by="relevance", sort_order="descending"):
base_url = "http://export.arxiv.org/api/query?"
query = f"search_query=all:{keyword}&start=0&max_results={results_limit}"
query += f"&sortBy={sort_by}&sortOrder={sort_order}"
return base_url + query
# Fetch search results from the arXiv API using the constructed URL
def fetch_search_results(query_url):
response = requests.get(query_url)
return response.text
# Parse the XML content of the API response to extract paper information
def parse_results(content):
from xml.etree import ElementTree as ET
root = ET.fromstring(content)
namespace = "{http://www.w3.org/2005/Atom}"
entries = root.findall(f"{namespace}entry")
results = []
for entry in entries:
title = entry.find(f"{namespace}title").text
link = entry.find(f"{namespace}id").text
summary = entry.find(f"{namespace}summary").text
summary = remove_newlines(summary)
# Extract the authors
authors = entry.findall(f"{namespace}author")
author_list = []
for author in authors:
name = author.find(f"{namespace}name").text
author_list.append(name)
authors_str = " and ".join(author_list)
# Extract the year
published = entry.find(f"{namespace}published").text
year = published.split("-")[0]
founds = re.search(r'\d+\.\d+', link)
if founds is None:
# some links are not standard; such as "https://arxiv.org/abs/cs/0603127v1".
# will be solved in the future.
continue
else:
arxiv_id = founds.group(0)
journal = f"arXiv preprint arXiv:{arxiv_id}"
result = {
"paper_id": arxiv_id,
"title": title,
"link": link,
"abstract": summary,
"authors": authors_str,
"year": year,
"journal": journal
}
results.append(result)
return results
query_url = build_query_url(keyword, counts)
content = fetch_search_results(query_url)
results = parse_results(content)
return results
######################################################################################################################
# References Class
######################################################################################################################
class References:
def __init__(self, load_papers=""):
if load_papers:
# todo: (1) too large bibtex may make have issues on token limitations; may truncate to 5 or 10
# (2) google scholar didn't give a full abstract for some papers ...
# (3) may use langchain to support long input
self.papers = load_papers_from_bibtex(load_papers)
else:
self.papers = []
def collect_papers(self, keywords_dict, method="arxiv", tldr=False):
"""
keywords_dict:
{"machine learning": 5, "language model": 2};
the first is the keyword, the second is how many references are needed.
"""
match method:
case "arxiv":
process = _collect_papers_arxiv
case "ss":
process = _collect_papers_ss
case _:
raise NotImplementedError("Other sources have not been not supported yet.")
for key, counts in keywords_dict.items():
self.papers = self.papers + process(key, counts, tldr)
seen = set()
papers = []
for paper in self.papers:
paper_id = paper["paper_id"]
if paper_id not in seen:
seen.add(paper_id)
papers.append(paper)
self.papers = papers
def to_bibtex(self, path_to_bibtex="ref.bib"):
"""
Turn the saved paper list into bibtex file "ref.bib". Return a list of all `paper_id`.
"""
papers = self.papers
# clear the bibtex file
with open(path_to_bibtex, "w", encoding="utf-8") as file:
file.write("")
bibtex_entries = []
paper_ids = []
for paper in papers:
bibtex_entry = f"""@article{{{paper["paper_id"]},
title = {{{paper["title"]}}},
author = {{{paper["authors"]}}},
journal={{{paper["journal"]}}},
year = {{{paper["year"]}}},
url = {{{paper["link"]}}}
}}"""
bibtex_entries.append(bibtex_entry)
paper_ids.append(paper["paper_id"])
# Save the generated BibTeX entries to a file
with open(path_to_bibtex, "a", encoding="utf-8") as file:
file.write(bibtex_entry)
file.write("\n\n")
return paper_ids
def to_prompts(self):
# `prompts`:
# {"paper1_bibtex_id": "paper_1_abstract", "paper2_bibtex_id": "paper2_abstract"}
# this will be used to instruct GPT model to cite the correct bibtex entry.
prompts = {}
for paper in self.papers:
prompts[paper["paper_id"]] = paper["abstract"]
return prompts
if __name__ == "__main__":
# refs = References()
# keywords_dict = {
# "Deep Q-Networks": 15,
# "Policy Gradient Methods": 24,
# "Actor-Critic Algorithms": 4,
# "Model-Based Reinforcement Learning": 13,
# "Exploration-Exploitation Trade-off": 7
# }
# refs.collect_papers(keywords_dict, method="ss", tldr=True)
# for p in refs.papers:
# print(p["paper_id"])
# print(len(refs.papers))
bib = "D:\\Projects\\auto-draft\\latex_templates\\pre_refs.bib"
papers = load_papers_from_bibtex(bib)
for paper in papers:
print(paper)
|