A newer version of the Gradio SDK is available:
5.12.0
MACOS
CPU
Choose way to install Rust.
Native Rust:
Install Rust:
curl –proto ‘=https’ –tlsv1.2 -sSf https://sh.rustup.rs | sh
Enter new shell and test:
rustc --version
When running a Mac with Intel hardware (not M1), you may run into
_clang: error: the clang compiler does not support '-march=native'_
during pip install. If so, set your archflags during pip install. eg:ARCHFLAGS="-arch x86_64" pip3 install -r requirements.txt
If you encounter an error while building a wheel during the
pip install
process, you may need to install a C++ compiler on your computer.Setup environment:
conda create -n h2ogpt python=3.10 conda activate h2ogpt pip install -r requirements.txt
Conda Rust:
If native rust does not work, try using conda way by creating conda environment with Python 3.10 and Rust.
conda create -n h2ogpt python=3.10 rust conda activate h2ogpt pip install -r requirements.txt
To run CPU mode with default model, do:
python generate.py --base_model='llama' --prompt_type=wizard2 --score_model=None --langchain_mode='UserData' --user_path=user_path
For the above, ignore the CLI output saying 0.0.0.0
, and instead point browser at http://localhost:7860 (for windows/mac) or the public live URL printed by the server (disable shared link with --share=False
). To support document Q/A jump to Install Optional Dependencies.
GPU (MPS Mac M1)
- Create conda environment with Python 3.10 and Rust.
conda create -n h2ogpt python=3.10 rust conda activate h2ogpt
- Install torch dependencies from nightly build to get latest mps support
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
- Verify whether torch uses mps, run below python script.
Outputimport torch if torch.backends.mps.is_available(): mps_device = torch.device("mps") x = torch.ones(1, device=mps_device) print (x) else: print ("MPS device not found.")
tensor([1.], device='mps:0')
- Install other h2ogpt requirements
pip install -r requirements.txt
- Run h2oGPT (without document Q/A):
python generate.py --base_model=h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b --cli=True
For the above, ignore the CLI output saying 0.0.0.0
, and instead point browser at http://localhost:7860 (for windows/mac) or the public live URL printed by the server (disable shared link with --share=False
).
To support document Q/A jump to Install Optional Dependencies.
Document Q/A dependencies
# Required for Doc Q/A: LangChain:
pip install -r reqs_optional/requirements_optional_langchain.txt
# Required for CPU: LLaMa/GPT4All:
pip install -r reqs_optional/requirements_optional_gpt4all.txt
# Optional: PyMuPDF/ArXiv:
pip install -r reqs_optional/requirements_optional_langchain.gpllike.txt
# Optional: Selenium/PlayWright:
pip install -r reqs_optional/requirements_optional_langchain.urls.txt
# Optional: for supporting unstructured package
python -m nltk.downloader all
and for supporting Word and Excel documents, download libreoffice: https://www.libreoffice.org/download/download-libreoffice/ . To support OCR, install tesseract and other dependencies:
brew install libmagic
brew link libmagic
brew install poppler
brew install tesseract --all-languages
Then for document Q/A with UI using CPU:
python generate.py --base_model='llama' --prompt_type=wizard2 --score_model=None --langchain_mode='UserData' --user_path=user_path
or MPS:
python generate.py --base_model=h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b --langchain_mode=MyData --score_model=None
For the above, ignore the CLI output saying 0.0.0.0
, and instead point browser at http://localhost:7860 (for windows/mac) or the public live URL printed by the server (disable shared link with --share=False
).
See CPU and GPU for some other general aspects about using h2oGPT on CPU or GPU, such as which models to try.
GPU with LLaMa
Note: Currently llama-cpp-python
only supports v3 ggml 4 bit quantized models for MPS, so use llama models ends with ggmlv3
& q4_x.bin
.
- Install dependencies
# Required for Doc Q/A: LangChain: pip install -r reqs_optional/requirements_optional_langchain.txt # Required for CPU: LLaMa/GPT4All: pip install -r reqs_optional/requirements_optional_gpt4all.txt
- Install the LATEST llama-cpp-python...which happily supports MacOS Metal GPU as of version 0.1.62 (you should now have llama-cpp-python v0.1.62 or higher installed)
pip uninstall llama-cpp-python -y CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install -U llama-cpp-python --no-cache-dir
- Edit below settings in
.env_gpt4all
- Uncomment line with
n_gpu_layers=20
- Change model name with your preferred model at line with
model_path_llama=WizardLM-7B-uncensored.ggmlv3.q8_0.bin
- Uncomment line with
- Run LLaMa model
python generate.py --base_model='llama' --cli==True