h2osiri / docs /README_InferenceServers.md
ariel0330's picture
Upload folder using huggingface_hub
7e60a5e
# Inference Servers
One can connect to Hugging Face text generation inference server, gradio servers running h2oGPT, or OpenAI servers.
## Hugging Face Text Generation Inference Server-Client
### Local Install
#### **Not Recommended**
This is just following the same [local-install](https://github.com/huggingface/text-generation-inference).
```bash
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
source "$HOME/.cargo/env"
```
```bash
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```
```bash
git clone https://github.com/huggingface/text-generation-inference.git
cd text-generation-inference
```
Needed to compile on Ubuntu:
```bash
sudo apt-get install libssl-dev gcc -y
```
Use `BUILD_EXTENSIONS=False` instead of have GPUs below A100.
```bash
conda create -n textgen -y
conda activate textgen
conda install python=3.10 -y
export CUDA_HOME=/usr/local/cuda-11.8
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
cd server && make install install-flash-attention
```
```bash
NCCL_SHM_DISABLE=1 CUDA_VISIBLE_DEVICES=0 text-generation-launcher --model-id h2oai/h2ogpt-oig-oasst1-512-6_9b --port 8080 --sharded false --trust-remote-code --max-stop-sequences=6
```
### Docker Install
#### **Recommended**
```bash
# https://docs.docker.com/engine/install/ubuntu/
sudo snap remove --purge docker
sudo apt-get update
sudo apt-get install ca-certificates curl gnupg
sudo install -m 0755 -d /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
sudo chmod a+r /etc/apt/keyrings/docker.gpg
echo "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
"$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
sudo apt-get install -y nvidia-container-toolkit
sudo docker run hello-world
# https://docs.docker.com/engine/install/linux-postinstall/
sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker
docker run hello-world
sudo nvidia-ctk runtime configure
sudo systemctl stop docker
sudo systemctl start docker
```
Reboot or run:
```bash
newgrp docker
```
in order to log in to this user.
Then for falcon 7b run:
```bash
export CUDA_VISIBLE_DEVICES=0
docker run --gpus device=0 --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2 --max-input-length 2048 --max-total-tokens 4096 --sharded=false --disable-custom-kernels --trust-remote-code --max-stop-sequences=6
```
or Pythia 12b:
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
docker run --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-12b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=4 --disable-custom-kernels --trust-remote-code --max-stop-sequences=6
```
or for 20B NeoX on 4 GPUs:
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
docker run --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-20b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=4 --disable-custom-kernels --trust-remote-code --max-stop-sequences=6
```
or for Falcon 40B on 2 GPUs and some HF token `$HUGGING_FACE_HUB_TOKEN`:
```bash
export CUDA_VISIBLE_DEVICES=1,2
sudo docker run --gpus all --shm-size 1g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e HUGGING_FACE_HUB_TOKEN=$HUGGING_FACE_HUB_TOKEN -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2 --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --sharded true --num-shard 2
```
Or for MosaicML Chat 30b (careful with docker GPU and TGI version, and one can increase the token counts since has 8k input context):
```bash
docker run -d --gpus '"device=0,3"' --shm-size 2g -e HUGGING_FACE_HUB_TOKEN=$HUGGING_FACE_HUB_TOKEN -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.9.1 --model-id mosaicml/mpt-30b-chat --max-batch-prefill-tokens=2048 --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --trust-remote-code
```
or for Falcon 40B instruct:
```bash
export CUDA_VISIBLE_DEVICES=6,7
docker run -d --gpus all --shm-size 1g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e HUGGING_FACE_HUB_TOKEN=$HUGGING_FACE_HUB_TOKEN -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id tiiuae/falcon-40b-instruct --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --sharded true --num-shard 2
```
or for Vicuna33b:
```bash
export CUDA_VISIBLE_DEVICES=4,5
docker run -d --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id lmsys/vicuna-33b-v1.3 --max-input-length 2048 --max-total-tokens 4096 --sharded true --num-shard 2
```
If one changes the port `6112` for each docker run command, any number of inference servers with any models can be added.
On isolated system, one might want to script start-up, and start with a kill sequence like this if one is using ngrok to map a local system to some domain name:
```bash
pkill -f generate --signal 9
pkill -f gradio --signal 9
pkill -f ngrok --signal 9
pkill -f text-generation-server --signal 9
sudo killall -9 generate
sudo killall -9 ngrok
sudo killall -9 text-generation-server
docker kill $(docker ps -q)
```
then create a run script to launch all dockers or other gradio servers, sleep a bit, and then launch all generates to connect to any TGI or other servers.
### Testing
Python test:
```python
from text_generation import Client
client = Client("http://127.0.0.1:6112")
print(client.generate("What is Deep Learning?", max_new_tokens=17).generated_text)
text = ""
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=17):
if not response.token.special:
text += response.token.text
print(text)
```
Curl Test:
```bash
curl 127.0.0.1:6112/generate -X POST -d '{"inputs":"<|prompt|>What is Deep Learning?<|endoftext|><|answer|>","parameters":{"max_new_tokens": 512, "truncate": 1024, "do_sample": true, "temperature": 0.1, "repetition_penalty": 1.2}}' -H 'Content-Type: application/json' --user "user:bhx5xmu6UVX4"
```
### Integration with h2oGPT
For example, server at IP `192.168.1.46` on docker for 4 GPU system running 12B model sharded across all 4 GPUs:
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
docker run --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-12b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=4 --disable-custom-kernels --trust-remote-code --max-stop-sequences=6
```
then generate in h2oGPT environment:
```bash
SAVE_DIR=./save/ python generate.py --inference_server="http://192.168.1.46:6112" --base_model=h2oai/h2ogpt-oasst1-512-12b
```
One can pass, e.g., `--max_max_new_tokens=2048 --max_new_tokens=512` to generate.py to control tokens, along with `--max-batch-prefill-tokens=2048 --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --trust-remote-code` for TGI server to match.
## Gradio Inference Server-Client
You can use your own server for some model supported by the server's system specs, e.g.:
```bash
SAVE_DIR=./save/ python generate.py --base_model=h2oai/h2ogpt-oasst1-512-12b
```
In any case, for your own server or some other server using h2oGPT gradio server, the client should specify the gradio endpoint as inference server. E.g. if server is at `http://192.168.0.10:7680`, then
```bash
python generate.py --inference_server="http://192.168.0.10:7680" --base_model=h2oai/h2ogpt-oasst1-falcon-40b
```
One can also use gradio live link like `https://6a8d4035f1c8858731.gradio.live` or some ngrok or other mapping/redirect to `https://` address.
One must specify the model used at the endpoint so the prompt type is handled. This assumes that base model is specified in `prompter.py::prompt_type_to_model_name`. Otherwise, one should pass `--prompt_type` as well, like:
```bash
python generate.py --inference_server="http://192.168.0.10:7680" --base_model=foo_model --prompt_type=wizard2
```
If even `prompt_type` is not listed in `enums.py::PromptType` then one can pass `--prompt_dict` like:
```bash
python generate.py --inference_server="http://192.168.0.10:7680" --base_model=foo_model --prompt_type=custom --prompt_dict="{'PreInput': None,'PreInstruct': '', 'PreResponse': '<bot>:', 'botstr': '<bot>:', 'chat_sep': '\n', 'humanstr': '<human>:', 'promptA': '<human>: ', 'promptB': '<human>: ', 'terminate_response': ['<human>:', '<bot>:']}"
```
which is just an example for the `human_bot` prompt type.
## OpenAI Inference Server-Client
If you have an OpenAI key and set an ENV `OPENAI_API_KEY`, then you can access OpenAI models via gradio by running:
```bash
OPENAI_API_KEY=<key> python generate.py --inference_server="openai_chat" --base_model=gpt-3.5-turbo --h2ocolors=False --langchain_mode=MyData
```
where `<key>` should be replaced by your OpenAI key that probably starts with `sk-`. OpenAI is **not** recommended for private document question-answer, but it can be a good reference for testing purposes or when privacy is not required.
## vLLM Inference Server-Client
Create separate environment
```bash
conda create -n vllm -y
conda activate vllm
conda install python=3.10 -y
```
then ensure openai global key/base are not changed in race if used together:
```bash
cd $HOME/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/
rm -rf openai_vllm*
cp -a openai openai_vllm
cp -a openai-0.27.8.dist-info openai_vllm-0.27.8.dist-info
find openai_vllm -name '*.py' | xargs sed -i 's/from openai /from openai_vllm /g'
find openai_vllm -name '*.py' | xargs sed -i 's/openai\./openai_vllm./g'
find openai_vllm -name '*.py' | xargs sed -i 's/from openai\./from openai_vllm./g'
find openai_vllm -name '*.py' | xargs sed -i 's/import openai/import openai_vllm/g'
```
Assuming torch was installed with CUDA 11.8, and you have installed cuda locally in `/usr/local/cuda-11.8`, then can start in OpenAI compliant mode. E.g. for LLaMa 65B on 2 GPUs:
```bash
CUDA_HOME=/usr/local/cuda-11.8 pip install vllm ray
export NCCL_IGNORE_DISABLED_P2P=1
export CUDA_VISIBLE_DEVICESs=0,1
python -m vllm.entrypoints.openai.api_server --port=5000 --host=0.0.0.0 --model h2oai/h2ogpt-research-oasst1-llama-65b --tokenizer=hf-internal-testing/llama-tokenizer --tensor-parallel-size=2 --seed 1234
```
which takes about 3 minutes until Uvicorn starts entirely so endpoint is fully ready, when one sees:
```text
INFO 07-15 02:56:41 llm_engine.py:131] # GPU blocks: 496, # CPU blocks: 204
INFO 07-15 02:56:43 tokenizer.py:28] For some LLaMA-based models, initializing the fast tokenizer may take a long time. To eliminate the initialization time, consider using 'hf-internal-testing/llama-tokenizer' instead of the original tokenizer.
INFO: Started server process [2442339]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:5000 (Press CTRL+C to quit)
```
Open port if want to allow access outside the server:
```bash
sudo ufw allow 5000
```
To run in interactive mode, if don't have P2P (check `nvidia-smi topo -m`) then set this env:
```bash
export NCCL_IGNORE_DISABLED_P2P=1
```
Then in python
```python
from vllm import LLM
llm = LLM(model='h2oai/h2ogpt-research-oasst1-llama-65b', tokenizer='hf-internal-testing/llama-tokenizer', tensor_parallel_size=2)
output = llm.generate("San Franciso is a")
```
See [vLLM docs](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html).
```text
(h2ollm) ubuntu@cloudvm:~/h2ogpt$ python -m vllm.entrypoints.openai.api_server --help
usage: api_server.py [-h] [--host HOST] [--port PORT] [--allow-credentials] [--allowed-origins ALLOWED_ORIGINS] [--allowed-methods ALLOWED_METHODS] [--allowed-headers ALLOWED_HEADERS] [--served-model-name SERVED_MODEL_NAME] [--model MODEL] [--tokenizer TOKENIZER]
[--tokenizer-mode {auto,slow}] [--download-dir DOWNLOAD_DIR] [--use-np-weights] [--use-dummy-weights] [--dtype {auto,half,bfloat16,float}] [--worker-use-ray] [--pipeline-parallel-size PIPELINE_PARALLEL_SIZE]
[--tensor-parallel-size TENSOR_PARALLEL_SIZE] [--block-size {8,16,32}] [--seed SEED] [--swap-space SWAP_SPACE] [--gpu-memory-utilization GPU_MEMORY_UTILIZATION] [--max-num-batched-tokens MAX_NUM_BATCHED_TOKENS] [--max-num-seqs MAX_NUM_SEQS]
[--disable-log-stats] [--engine-use-ray] [--disable-log-requests]
vLLM OpenAI-Compatible RESTful API server.
options:
-h, --help show this help message and exit
--host HOST host name
--port PORT port number
--allow-credentials allow credentials
--allowed-origins ALLOWED_ORIGINS
allowed origins
--allowed-methods ALLOWED_METHODS
allowed methods
--allowed-headers ALLOWED_HEADERS
allowed headers
--served-model-name SERVED_MODEL_NAME
The model name used in the API. If not specified, the model name will be the same as the huggingface name.
--model MODEL name or path of the huggingface model to use
--tokenizer TOKENIZER
name or path of the huggingface tokenizer to use
--tokenizer-mode {auto,slow}
tokenizer mode. "auto" will use the fast tokenizer if available, and "slow" will always use the slow tokenizer.
--download-dir DOWNLOAD_DIR
directory to download and load the weights, default to the default cache dir of huggingface
--use-np-weights save a numpy copy of model weights for faster loading. This can increase the disk usage by up to 2x.
--use-dummy-weights use dummy values for model weights
--dtype {auto,half,bfloat16,float}
data type for model weights and activations. The "auto" option will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.
--worker-use-ray use Ray for distributed serving, will be automatically set when using more than 1 GPU
--pipeline-parallel-size PIPELINE_PARALLEL_SIZE, -pp PIPELINE_PARALLEL_SIZE
number of pipeline stages
--tensor-parallel-size TENSOR_PARALLEL_SIZE, -tp TENSOR_PARALLEL_SIZE
number of tensor parallel replicas
--block-size {8,16,32}
token block size
--seed SEED random seed
--swap-space SWAP_SPACE
CPU swap space size (GiB) per GPU
--gpu-memory-utilization GPU_MEMORY_UTILIZATION
the percentage of GPU memory to be used forthe model executor
--max-num-batched-tokens MAX_NUM_BATCHED_TOKENS
maximum number of batched tokens per iteration
--max-num-seqs MAX_NUM_SEQS
maximum number of sequences per iteration
--disable-log-stats disable logging statistics
--engine-use-ray use Ray to start the LLM engine in a separate process as the server process.
--disable-log-requests
disable logging requests
```
CURL test:
```bash
curl http://localhost:5000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "h2oai/h2ogpt-research-oasst1-llama-65b",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
```
If started OpenAI-compliant server, then run h2oGPT:
```bash
python generate.py --inference_server="vllm:0.0.0.0:5000" --base_model=h2oai/h2ogpt-oasst1-falcon-40b --langchain_mode=MyData
```
Note: `vllm_chat` ChatCompletion is not supported by vLLM project.
Note vLLM has bug in stopping sequence that is does not return the last token, unlike OpenAI, so a hack is in place for `prompt_type=human_bot`, and other prompts may need similar hacks. See `fix_text()` in `src/prompter.py`.
## h2oGPT start-up vs. in-app selection
When using `generate.py`, specifying the `--base_model` or `--inference_server` on the CLI is not required. One can also add any model and server URL (with optional port) in the **Model** tab at the bottom:
![Add Model](model_add.png)
Enter the mode name as the same name one would use for `--base_model` and enter the server url:port as the same url (optional port) one would use for `--inference_server`. Then click `Add new Model, Lora, Server url:port` button. This adds that to the drop-down selection, and then one can load the model by clicking "Load-Unload" model button. For an inference server, the `Load 8-bit`, `Choose Devices`, `LORA`, and `GPU ID` buttons or selections are not applicable.
One can also do model comparison by clicking the `Compare Mode` checkbox, and add new models and servers to each left and right models for a view like:
![Model Compare](models_compare.png)
## Locking Models for easy start-up or in-app comparison
To avoid specifying model-related settings as independent options, and to disable loading new models, use `--model_lock` like:
```bash
python generate.py --model_lock=[{'inference_server':'http://192.168.1.46:6112','base_model':'h2oai/h2ogpt-oasst1-512-12b'}]
```
where for this case the prompt_type for this base_model is in prompter.py, so it doesn't need to be specified. Note that no spaces or other white space is allowed within the double quotes for model_lock due to how CLI arguments are parsed.
For two endpoints, one uses (again with no spaces in arg)
```bash
python generate.py --model_lock=[{'inference_server':'http://192.168.1.46:6112','base_model':'h2oai/h2ogpt-oasst1-512-12b'},{'inference_server':'http://192.168.1.46:6114','base_model':'h2oai/h2ogpt-oasst1-512-20b'},{'inference_server':'http://192.168.1.46:6113','base_model':'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'}]
```
One can have a mix of local models, HF text-generation inference servers, Gradio generation servers, and OpenAI servers, e.g.:
```bash
python generate.py --model_lock=[{'inference_server':'http://192.168.1.46:6112','base_model':'h2oai/h2ogpt-oasst1-512-12b'},{'inference_server':'http://192.168.1.46:6114','base_model':'h2oai/h2ogpt-oasst1-512-20b'},{'inference_server':'http://192.168.1.46:6113','base_model':'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'},{'inference_server':'http://192.168.0.1:6000','base_model':'TheBloke/Wizard-Vicuna-13B-Uncensored-HF','prompt_type':'instruct_vicuna'},{'inference_server':'http://192.168.0.245:6000','base_model':'h2oai/h2ogpt-oasst1-falcon-40b'},{'inference_server':'http://192.168.1.46:7860','base_model':'h2oai/h2ogpt-oasst1-512-12b'},{'inference_server':'http://192.168.0.1:7000','base_model':'h2oai/h2ogpt-research-oasst1-llama-65b','prompt_type':'human_bot'},{'inference_server':'openai_chat','base_model':'gpt-3.5-turbo'}] --model_lock_columns=4
```
where the lock columns of 4 makes a grid of chatbots with 4 columns.
If you run in bash and need to use an authentication for the Hugging Face text generation inference server, then that can be passed:
```text
{'inference_server':'https://server.h2o.ai USER AUTH','base_model':'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'}
```
i.e. 4 spaces between each IP, USER, and AUTH. USER should be the user and AUTH be the token.
When bringing up `generate.py` with any inference server, one can set `REQUEST_TIMEOUT` ENV to smaller value than default of 60 seconds to get server up faster if one has many inaccessible endpoints you don't mind skipping. E.g. set `REQUEST_TIMEOUT=5`. One can also choose the timeout overall for each chat turn using env `REQUEST_TIMEOUT_FAST` that defaults to 10 seconds.
Note: The client API calls for chat APIs (i.e. `instruction` type for `instruction`, `instruction_bot`, `instruction_bot_score`, and similar for `submit` and `retry` types) require managing all chat sessions via API. However, the `nochat` APIs only use the first model in the list of chats or model_lock list.
![Models Lock](models_lock.png)
### System info from gradio server
```python
import json
from gradio_client import Client
ADMIN_PASS = ''
HOST = "http://localhost:7860"
client = Client(HOST)
api_name = '/system_info_dict'
res = client.predict(ADMIN_PASS, api_name=api_name)
res = json.loads(res)
print(res)
# e.g.
print(res['base_model'])
print(res['hash'])
```
where one should set `ADMIN_PASS` to pass set for that instance and change `HOST` to the desired host.