File size: 30,338 Bytes
099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 2b5c2e3 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 14f85b1 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 2b5c2e3 099e99c 34371d3 099e99c 34371d3 c26510f 34371d3 099e99c c26510f 099e99c c2fbbc3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 099e99c 34371d3 1b00519 34371d3 099e99c 2b5c2e3 099e99c 34371d3 c26510f 34371d3 099e99c 34371d3 099e99c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
import json
import uuid
from typing import Union
import argilla as rg
import gradio as gr
import numpy as np
import pandas as pd
from datasets import (
Dataset,
get_dataset_config_names,
get_dataset_split_names,
load_dataset,
)
from distilabel.distiset import Distiset
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import HfApi
from src.distilabel_dataset_generator.apps.base import (
hide_success_message,
show_success_message,
validate_argilla_user_workspace_dataset,
validate_push_to_hub,
)
from src.distilabel_dataset_generator.pipelines.base import (
DEFAULT_BATCH_SIZE,
)
from src.distilabel_dataset_generator.pipelines.embeddings import (
get_embeddings,
get_sentence_embedding_dimensions,
)
from src.distilabel_dataset_generator.pipelines.eval import (
generate_pipeline_code,
get_custom_evaluator,
get_ultrafeedback_evaluator,
)
from src.distilabel_dataset_generator.utils import (
column_to_list,
extract_column_names,
get_argilla_client,
get_org_dropdown,
process_columns,
swap_visibility,
pad_or_truncate_list,
)
def get_iframe(hub_repo_id: str) -> str:
if not hub_repo_id:
raise gr.Error("Hub repository ID is required.")
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
iframe = f"""
<iframe
src="{url}"
frameborder="0"
width="100%"
height="600px"
></iframe>
"""
return iframe
def get_valid_columns(dataframe: pd.DataFrame):
instruction_valid_columns = []
response_valid_columns = []
for col in dataframe.columns:
sample_val = dataframe[col].iloc[0]
if isinstance(sample_val, str) or (
isinstance(sample_val, (list, np.ndarray))
and all(isinstance(item, dict) and "role" in item for item in sample_val)
):
instruction_valid_columns.append(col)
response_valid_columns.append(col)
if isinstance(sample_val, (list, np.ndarray)) and all(
isinstance(item, str) for item in sample_val
):
response_valid_columns.append(col)
return instruction_valid_columns, response_valid_columns
def load_dataset_from_hub(repo_id: str, num_rows: int = 10):
if not repo_id:
raise gr.Error("Hub repo id is required")
subsets = get_dataset_config_names(repo_id)
ds_dict = load_dataset(repo_id, subsets[0])
splits = get_dataset_split_names(repo_id, subsets[0])
ds = ds_dict[splits[0]]
if num_rows:
ds = ds.select(range(num_rows))
dataframe = ds.to_pandas()
instruction_valid_columns, response_valid_columns = get_valid_columns(dataframe)
return (
dataframe,
gr.Dropdown(choices=instruction_valid_columns, label="Instruction column"),
gr.Dropdown(choices=response_valid_columns, label="Response column"),
)
def define_evaluation_aspects(task_type: str):
if task_type == "ultrafeedback":
return gr.Dropdown(
value=["overall-rating"],
choices=["helpfulness", "truthfulness", "overall-rating", "honesty"],
label="Evaluation Aspects",
multiselect=True,
interactive=True,
)
else:
return gr.Dropdown(interactive=False, visible=False)
def evaluate_instruction_response(
dataframe: pd.DataFrame,
aspects: list[str],
instruction_column: str,
response_columns: str,
num_rows: int = 10,
is_sample: bool = False,
progress=gr.Progress(),
):
progress(0.0, desc="Evaluating instructions and responses")
data = process_columns(dataframe, instruction_column, response_columns)
num_generations = len(data[0]["generations"])
evaluated_results = []
for entry in data:
result_row = {
"instruction": entry["instruction"],
"generations": entry["generations"],
}
for aspect in aspects:
result_row[f"ratings_{aspect}"] = None
result_row[f"rationale_for_ratings_{aspect}"] = None
if aspect in ["truthfulness", "helpfulness"]:
result_row[f"type_{aspect}"] = None
result_row[f"rationale_for_type_{aspect}"] = None
result_row["model_name"] = None
evaluated_results.append(result_row)
batch_size = DEFAULT_BATCH_SIZE
total_steps: int = len(aspects) * num_rows
# evaluate instructions and responses
for aspect in aspects:
ultrafeedback_evaluator = get_ultrafeedback_evaluator(aspect, is_sample)
n_processed = 0
while n_processed < num_rows:
progress(
(len(aspects) * n_processed) / total_steps,
total=total_steps,
desc=f"Evaluating aspect: {aspect}",
)
remaining_rows = num_rows - n_processed
batch_size = min(batch_size, remaining_rows)
inputs = data[n_processed : n_processed + batch_size]
batch_results = list(ultrafeedback_evaluator.process(inputs=inputs))
for j, result in enumerate(batch_results[0]):
idx = n_processed + j
evaluated_results[idx][f"ratings_{aspect}"] = pad_or_truncate_list(
result.get("ratings"), num_generations
)
evaluated_results[idx]["model_name"] = result.get("model_name")
if aspect in ["truthfulness", "helpfulness"]:
evaluated_results[idx][f"type_{aspect}"] = pad_or_truncate_list(
result.get("types"), num_generations
)
evaluated_results[idx][f"rationale_for_type_{aspect}"] = (
pad_or_truncate_list(result.get("rationales"), num_generations)
)
evaluated_results[idx][f"rationale_for_ratings_{aspect}"] = (
pad_or_truncate_list(
result.get("rationales-for-ratings"), num_generations
)
)
else:
evaluated_results[idx][f"rationale_for_ratings_{aspect}"] = (
pad_or_truncate_list(result.get("rationales"), num_generations)
)
n_processed += batch_size
# create final dataset
dataframe = pd.DataFrame(evaluated_results)
progress(1.0, desc="Dataset evaluation completed")
return dataframe
def evaluate_custom(
dataframe: pd.DataFrame,
prompt_template: str,
structured_output: dict,
num_rows: int = 10,
is_sample: bool = False,
progress=gr.Progress(),
):
progress(0.0, desc="Evaluating dataset")
columns = extract_column_names(prompt_template)
input_columns = {column: column_to_list(dataframe, column) for column in columns}
custom_evaluator = get_custom_evaluator(
prompt_template, structured_output, columns, is_sample
)
batch_size = DEFAULT_BATCH_SIZE
# evaluate the data
n_processed = 0
evaluation_results = []
while n_processed < num_rows:
progress(
n_processed / num_rows,
desc="Evaluating dataset",
)
remaining_rows = num_rows - n_processed
batch_size = min(batch_size, remaining_rows)
inputs = []
for idx in range(n_processed, n_processed + batch_size):
input = {column: input_columns[column][idx] for column in input_columns}
inputs.append(input)
batch = list(custom_evaluator.process(inputs=inputs))
evaluation_results.extend(batch[0])
n_processed += batch_size
# create final dataset
distiset_results = []
for result in evaluation_results:
record = {key: result[key] for key in result if key != "distilabel_metadata"}
distiset_results.append(record)
dataframe = pd.DataFrame(distiset_results)
progress(1.0, desc="Dataset evaluation completed")
return dataframe
def _evaluate_dataset(
dataframe: pd.DataFrame,
eval_type: str,
aspects_instruction_response: list[str],
instruction_instruction_response: str,
response_instruction_response: str,
prompt_template: str,
structured_output: dict,
num_rows: int = 10,
is_sample: bool = False,
):
if eval_type == "ultrafeedback":
dataframe = evaluate_instruction_response(
dataframe=dataframe,
aspects=aspects_instruction_response,
instruction_column=instruction_instruction_response,
response_columns=response_instruction_response,
num_rows=num_rows,
is_sample=is_sample,
)
else:
dataframe = evaluate_custom(
dataframe=dataframe,
prompt_template=prompt_template,
structured_output=structured_output,
num_rows=num_rows,
is_sample=is_sample,
)
return dataframe
def evaluate_sample_dataset(
repo_id: str,
eval_type: str,
aspects_instruction_response: list[str],
instruction_instruction_response: str,
response_instruction_response: str,
prompt_template: str,
structured_output: dict,
):
dataframe, _, _ = load_dataset_from_hub(repo_id, num_rows=10)
dataframe = _evaluate_dataset(
dataframe=dataframe,
eval_type=eval_type,
aspects_instruction_response=aspects_instruction_response,
instruction_instruction_response=instruction_instruction_response,
response_instruction_response=response_instruction_response,
prompt_template=prompt_template,
structured_output=structured_output,
num_rows=10,
is_sample=True,
)
return dataframe
def push_dataset_to_hub(
dataframe: pd.DataFrame, org_name: str, repo_name: str, oauth_token, private
):
repo_id = validate_push_to_hub(org_name, repo_name)
distiset = Distiset({"default": Dataset.from_pandas(dataframe)})
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=False,
token=oauth_token.token,
create_pr=False,
)
def push_dataset(
org_name: str,
repo_name: str,
private: bool,
num_rows: int,
original_repo_id: str,
eval_type: str,
aspects_instruction_response: list[str],
instruction_instruction_response: str,
response_instruction_response: str,
prompt_template: str,
structured_output: dict,
oauth_token: Union[gr.OAuthToken, None] = None,
progress=gr.Progress(),
) -> pd.DataFrame:
dataframe, _, _ = load_dataset_from_hub(original_repo_id, num_rows=num_rows)
dataframe = _evaluate_dataset(
dataframe=dataframe,
eval_type=eval_type,
aspects_instruction_response=aspects_instruction_response,
instruction_instruction_response=instruction_instruction_response,
response_instruction_response=response_instruction_response,
prompt_template=prompt_template,
structured_output=structured_output,
num_rows=num_rows,
)
push_dataset_to_hub(dataframe, org_name, repo_name, oauth_token, private)
try:
progress(0.1, desc="Setting up user and workspace")
client = get_argilla_client()
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
if eval_type == "ultrafeedback":
num_generations = len((dataframe["generations"][0]))
fields = [
rg.ChatField(
name=f"chat_{i}",
title=f"Chat {i+1}",
description=f"User and assistant conversation for generation {i+1}",
)
for i in range(num_generations)
]
questions = []
for i in range(num_generations):
for aspect in aspects_instruction_response:
questions.append(
rg.RatingQuestion(
name=f"ratings_{aspect}_{i}",
values=list(range(11)),
title=f"Ratings for {aspect} for response {i+1}",
required=True,
)
)
questions.append(
rg.TextQuestion(
name=f"rationale_for_ratings_{aspect}_{i}",
title=f"Rationale for ratings for {aspect} for response {i+1}",
required=False,
use_markdown=True,
)
)
if aspect in ["truthfulness", "helpfulness"]:
questions.append(
rg.RatingQuestion(
name=f"type_{aspect}_{i}",
values=list(range(1, 6)),
title=f"The type of the response {i+1} for {aspect}",
required=True,
)
)
questions.append(
rg.TextQuestion(
name=f"rationale_for_type_{aspect}_{i}",
title=f"Rationale for type of the response {i+1} for {aspect}",
required=False,
use_markdown=True,
)
)
metadata = [
rg.IntegerMetadataProperty(
name="instruction_length", title="Instruction length"
),
]
for i in range(num_generations):
metadata.append(
rg.IntegerMetadataProperty(
name=f"response_{i}_length", title=f"Response {i+1} length"
)
)
vectors = [
rg.VectorField(
name="instruction_embeddings",
dimensions=get_sentence_embedding_dimensions(),
)
]
settings = rg.Settings(
fields=fields,
questions=questions,
metadata=metadata,
vectors=vectors,
guidelines="Please review the conversation and provide an evaluation.",
)
dataframe["instruction_length"] = dataframe["instruction"].apply(len)
for i in range(num_generations):
dataframe[f"response_{i}_length"] = dataframe["generations"].apply(
lambda gens: len(gens[i]) if i < len(gens) else 0
)
dataframe["instruction_embeddings"] = get_embeddings(
dataframe["instruction"].to_list()
)
progress(0.5, desc="Creating dataset")
rg_dataset = client.datasets(name=repo_name, workspace=hf_user)
if rg_dataset is None:
rg_dataset = rg.Dataset(
name=repo_name,
workspace=hf_user,
settings=settings,
client=client,
)
rg_dataset = rg_dataset.create()
progress(0.7, desc="Pushing dataset to Argilla")
hf_dataset = Dataset.from_pandas(dataframe)
records = []
for sample in hf_dataset:
fields = {}
metadata = {"instruction_length": sample.get("instruction_length", 0)}
vectors = {
"instruction_embeddings": sample.get("instruction_embeddings", [])
}
suggestions = []
generations = sample.get("generations", [])
for i in range(num_generations):
fields[f"chat_{i}"] = [
{"role": "user", "content": sample.get("instruction", "")},
{"role": "assistant", "content": generations[i]},
]
metadata[f"response_{i}_length"] = sample.get(
f"response_{i}_length", 0
)
for aspect in aspects_instruction_response:
ratings = sample.get(f"ratings_{aspect}", [])
rationales = sample.get(f"rationale_for_ratings__{aspect}", [])
rating_value = (
ratings[i]
if ratings and isinstance(ratings[i], int)
else None
)
rationale_value = (
rationales[i]
if rationales and isinstance(rationales[i], str)
else None
)
if rating_value is not None:
suggestions.append(
rg.Suggestion(
question_name=f"ratings_{aspect}_{i}",
value=rating_value,
)
)
if rationale_value is not None:
suggestions.append(
rg.Suggestion(
question_name=f"rationale_for_ratings_{aspect}_{i}",
value=rationale_value,
)
)
if aspect in ["truthfulness", "helpfulness"]:
types = sample.get(f"type_{aspect}", [])
rationale_types = sample.get(
f"rationale_for_type_{aspect}", []
)
type_value = (
types[i]
if types and isinstance(types[i], int)
else None
)
rationale_type_value = (
rationale_types[i]
if rationale_types
and isinstance(rationale_types[i], str)
else None
)
if type_value is not None:
suggestions.append(
rg.Suggestion(
question_name=f"type_{aspect}_{i}",
value=type_value,
)
)
if rationale_type_value is not None:
suggestions.append(
rg.Suggestion(
question_name=f"rationale_for_type_{aspect}_{i}",
value=rationale_type_value,
)
)
records.append(
rg.Record(
fields=fields,
metadata=metadata,
vectors=vectors,
suggestions=suggestions,
)
)
rg_dataset.records.log(records=records)
progress(1.0, desc="Dataset pushed to Argilla")
else:
columns = extract_column_names(prompt_template)
settings = rg.Settings(
fields=[
rg.TextField(
name=column,
title=column.capitalize(),
description="The column content",
)
for column in columns
],
questions=[
rg.TextQuestion(
name="evaluation",
title="Evaluation",
description="The generated evaluation",
use_markdown=True,
),
],
metadata=[
rg.IntegerMetadataProperty(
name=f"{column}_length", title=f"{column.capitalize()} length"
)
for column in columns
],
vectors=[
rg.VectorField(
name=f"{column}_embeddings",
dimensions=get_sentence_embedding_dimensions(),
)
for column in columns
],
guidelines="Please review, correct and provide an accurate evaluation.",
)
for column in columns:
dataframe[f"{column}_length"] = dataframe[column].apply(len)
dataframe[f"{column}_embeddings"] = get_embeddings(dataframe[column])
progress(0.5, desc="Creating dataset")
rg_dataset = client.datasets(name=repo_name, workspace=hf_user)
if rg_dataset is None:
rg_dataset = rg.Dataset(
name=repo_name,
workspace=hf_user,
settings=settings,
client=client,
)
rg_dataset = rg_dataset.create()
progress(0.7, desc="Pushing dataset to Argilla")
hf_dataset = Dataset.from_pandas(dataframe)
rg_dataset.records.log(
records=hf_dataset, mapping={"generation": "evaluation"}
)
progress(1.0, desc="Dataset pushed to Argilla")
except Exception as e:
raise gr.Error(f"Error pushing dataset to Argilla: {e}")
return ""
def show_pipeline_code_visibility():
return {pipeline_code_ui: gr.Accordion(visible=True)}
def hide_pipeline_code_visibility():
return {pipeline_code_ui: gr.Accordion(visible=False)}
######################
# Gradio UI
######################
with gr.Blocks() as app:
with gr.Column() as main_ui:
gr.Markdown("## 1. Select your input dataset")
with gr.Row(equal_height=False):
with gr.Column(scale=1):
search_in = HuggingfaceHubSearch(
label="Search",
placeholder="Search for a dataset",
search_type="dataset",
sumbit_on_select=True,
)
load_btn = gr.Button("Load dataset", variant="primary")
with gr.Column(scale=3):
search_out = gr.HTML(label="Dataset preview")
gr.HTML(value="<hr>")
gr.Markdown(value="## 2. Configure your task")
with gr.Row(equal_height=False):
with gr.Column(scale=1):
eval_type = gr.Dropdown(
label="Evaluation type",
choices=["ultrafeedback", "custom"],
value="ultrafeedback",
multiselect=False,
visible=False,
)
with gr.Tab("ultrafeedback") as tab_instruction_response:
aspects_instruction_response = define_evaluation_aspects(
"ultrafeedback"
)
instruction_instruction_response = gr.Dropdown(
label="Instruction Column",
interactive=True,
multiselect=False,
allow_custom_value=False,
)
response_instruction_response = gr.Dropdown(
label="Response Column",
interactive=True,
multiselect=True,
allow_custom_value=False,
)
tab_instruction_response.select(
fn=lambda: "ultrafeedback",
inputs=[],
outputs=[eval_type],
)
with gr.Tab("custom") as tab_custom:
aspects_custom = define_evaluation_aspects("custom")
prompt_template = gr.Code(
label="Prompt template",
value="Evaluate {{column_1}} based on {{column_2}}.",
language="markdown",
interactive=True,
)
structured_output = gr.Code(
label="Structured output",
value=json.dumps(
{
"type": "object",
"properties": {
"quality": {"type": "integer"},
"clarity": {"type": "integer"},
"relevance": {"type": "integer"},
},
},
indent=4,
),
language="json",
interactive=True,
)
tab_custom.select(
fn=lambda: "custom",
inputs=[],
outputs=[eval_type],
)
btn_apply_to_sample_dataset = gr.Button(
"Refresh dataset", variant="secondary", size="sm"
)
with gr.Column(scale=3):
dataframe = gr.Dataframe(
headers=["prompt", "completion", "evaluation"],
wrap=False,
height=500,
interactive=False,
)
gr.HTML(value="<hr>")
gr.Markdown(value="## 3. Evaluate your dataset")
with gr.Row(equal_height=False):
with gr.Column(scale=2):
org_name = get_org_dropdown()
repo_name = gr.Textbox(
label="Repo name",
placeholder="dataset_name",
value=f"my-distiset-{str(uuid.uuid4())[:8]}",
interactive=True,
)
num_rows = gr.Number(
label="Number of rows",
value=10,
interactive=True,
scale=1,
)
private = gr.Checkbox(
label="Private dataset",
value=False,
interactive=True,
scale=1,
)
btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2)
with gr.Column(scale=3):
success_message = gr.Markdown(visible=True)
with gr.Accordion(
"Do you want to go further? Customize and run with Distilabel",
open=False,
visible=False,
) as pipeline_code_ui:
code = generate_pipeline_code(
repo_id=search_in.value,
aspects=aspects_instruction_response.value,
instruction_column=instruction_instruction_response,
response_columns=response_instruction_response,
prompt_template=prompt_template.value,
structured_output=structured_output.value,
num_rows=num_rows.value,
eval_type=eval_type.value,
)
pipeline_code = gr.Code(
value=code,
language="python",
label="Distilabel Pipeline Code",
)
search_in.submit(fn=get_iframe, inputs=search_in, outputs=search_out)
load_btn.click(
fn=load_dataset_from_hub,
inputs=[search_in],
outputs=[
dataframe,
instruction_instruction_response,
response_instruction_response,
],
)
btn_apply_to_sample_dataset.click(
fn=evaluate_sample_dataset,
inputs=[
search_in,
eval_type,
aspects_instruction_response,
instruction_instruction_response,
response_instruction_response,
prompt_template,
structured_output,
],
outputs=dataframe,
)
btn_push_to_hub.click(
fn=validate_argilla_user_workspace_dataset,
inputs=[repo_name],
outputs=[success_message],
show_progress=True,
).then(
fn=validate_push_to_hub,
inputs=[org_name, repo_name],
outputs=[success_message],
show_progress=True,
).success(
fn=hide_success_message,
outputs=[success_message],
show_progress=True,
).success(
fn=hide_pipeline_code_visibility,
inputs=[],
outputs=[pipeline_code_ui],
).success(
fn=push_dataset,
inputs=[
org_name,
repo_name,
private,
num_rows,
search_in,
eval_type,
aspects_instruction_response,
instruction_instruction_response,
response_instruction_response,
prompt_template,
structured_output,
],
outputs=[success_message],
show_progress=True,
).success(
fn=show_success_message,
inputs=[org_name, repo_name],
outputs=[success_message],
).success(
fn=generate_pipeline_code,
inputs=[
search_in,
aspects_instruction_response,
instruction_instruction_response,
response_instruction_response,
prompt_template,
structured_output,
num_rows,
eval_type,
],
outputs=[pipeline_code],
).success(
fn=show_pipeline_code_visibility,
inputs=[],
outputs=[pipeline_code_ui],
)
app.load(fn=swap_visibility, outputs=main_ui)
app.load(fn=get_org_dropdown, outputs=[org_name])
|