add evaluation task
Browse files- app.py +3 -2
- pyproject.toml +1 -1
- src/distilabel_dataset_generator/apps/eval.py +672 -199
- src/distilabel_dataset_generator/apps/sft.py +4 -0
- src/distilabel_dataset_generator/apps/textcat.py +11 -0
- src/distilabel_dataset_generator/pipelines/eval.py +205 -0
- src/distilabel_dataset_generator/utils.py +90 -1
app.py
CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
|
|
3 |
from src.distilabel_dataset_generator._tabbedinterface import TabbedInterface
|
4 |
from src.distilabel_dataset_generator.apps.faq import app as faq_app
|
5 |
from src.distilabel_dataset_generator.apps.sft import app as sft_app
|
|
|
6 |
from src.distilabel_dataset_generator.apps.textcat import app as textcat_app
|
7 |
|
8 |
theme = gr.themes.Monochrome(
|
@@ -54,8 +55,8 @@ button[role="tab"][data-tab-id][aria-selected="true"] {
|
|
54 |
"""
|
55 |
|
56 |
demo = TabbedInterface(
|
57 |
-
[textcat_app, sft_app, faq_app],
|
58 |
-
["Text Classification", "Supervised Fine-Tuning", "FAQ"],
|
59 |
css=css,
|
60 |
title="""
|
61 |
<h1>Synthetic Data Generator</h1>
|
|
|
3 |
from src.distilabel_dataset_generator._tabbedinterface import TabbedInterface
|
4 |
from src.distilabel_dataset_generator.apps.faq import app as faq_app
|
5 |
from src.distilabel_dataset_generator.apps.sft import app as sft_app
|
6 |
+
from src.distilabel_dataset_generator.apps.eval import app as eval_app
|
7 |
from src.distilabel_dataset_generator.apps.textcat import app as textcat_app
|
8 |
|
9 |
theme = gr.themes.Monochrome(
|
|
|
55 |
"""
|
56 |
|
57 |
demo = TabbedInterface(
|
58 |
+
[textcat_app, sft_app, eval_app, faq_app],
|
59 |
+
["Text Classification", "Supervised Fine-Tuning", "Evaluation", "FAQ"],
|
60 |
css=css,
|
61 |
title="""
|
62 |
<h1>Synthetic Data Generator</h1>
|
pyproject.toml
CHANGED
@@ -6,7 +6,7 @@ authors = [
|
|
6 |
{name = "davidberenstein1957", email = "[email protected]"},
|
7 |
]
|
8 |
dependencies = [
|
9 |
-
"distilabel[hf-inference-endpoints,argilla,outlines]>=1.4.1",
|
10 |
"gradio[oauth]<5.0.0",
|
11 |
"transformers>=4.44.2",
|
12 |
"sentence-transformers>=3.2.0",
|
|
|
6 |
{name = "davidberenstein1957", email = "[email protected]"},
|
7 |
]
|
8 |
dependencies = [
|
9 |
+
"distilabel[hf-inference-endpoints,argilla,outlines,instructor]>=1.4.1",
|
10 |
"gradio[oauth]<5.0.0",
|
11 |
"transformers>=4.44.2",
|
12 |
"sentence-transformers>=3.2.0",
|
src/distilabel_dataset_generator/apps/eval.py
CHANGED
@@ -1,70 +1,106 @@
|
|
1 |
import json
|
|
|
|
|
2 |
|
|
|
3 |
import gradio as gr
|
|
|
4 |
import pandas as pd
|
5 |
-
from datasets import
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
|
7 |
|
8 |
-
from src.distilabel_dataset_generator.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
-
def get_iframe(hub_repo_id) -> str:
|
12 |
if not hub_repo_id:
|
13 |
-
raise gr.Error("Hub
|
|
|
14 |
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
|
15 |
iframe = f"""
|
16 |
<iframe
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
></iframe>
|
22 |
-
"""
|
23 |
return iframe
|
24 |
|
25 |
|
26 |
-
def get_valid_columns(
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
if isinstance(sample_val, str) or (
|
31 |
-
isinstance(sample_val, list)
|
32 |
-
and all(isinstance(item, dict) for item in sample_val)
|
33 |
):
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
if not
|
41 |
raise gr.Error("Hub repo id is required")
|
42 |
-
|
43 |
-
|
|
|
44 |
ds = ds_dict[splits[0]]
|
45 |
if num_rows:
|
46 |
ds = ds.select(range(num_rows))
|
47 |
-
|
48 |
-
|
49 |
-
valid_columns = get_valid_columns(df)
|
50 |
return (
|
51 |
-
|
52 |
-
gr.Dropdown(choices=
|
53 |
-
gr.Dropdown(choices=
|
54 |
-
gr.Dropdown(choices=valid_columns, label="Response Column"),
|
55 |
)
|
56 |
|
57 |
|
58 |
def define_evaluation_aspects(task_type: str):
|
59 |
-
if task_type == "
|
60 |
-
return gr.Dropdown(
|
61 |
-
value=["overall-rating"],
|
62 |
-
choices=["complexity", "quality"],
|
63 |
-
label="Evaluation Aspects",
|
64 |
-
multiselect=True,
|
65 |
-
interactive=True,
|
66 |
-
)
|
67 |
-
elif task_type == "instruction-response":
|
68 |
return gr.Dropdown(
|
69 |
value=["overall-rating"],
|
70 |
choices=["helpfulness", "truthfulness", "overall-rating", "honesty"],
|
@@ -76,106 +112,473 @@ def define_evaluation_aspects(task_type: str):
|
|
76 |
return gr.Dropdown(interactive=False, visible=False)
|
77 |
|
78 |
|
79 |
-
def evaluate_instruction(df: pd.DataFrame, aspects: list[str], instruction_column: str):
|
80 |
-
pass
|
81 |
-
|
82 |
-
|
83 |
def evaluate_instruction_response(
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
):
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
def evaluate_custom(
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
91 |
):
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
eval_type: str,
|
98 |
-
aspects_instruction: list[str],
|
99 |
-
instruction_column: str,
|
100 |
aspects_instruction_response: list[str],
|
101 |
-
|
102 |
-
|
103 |
-
aspects_custom: list[str],
|
104 |
prompt_template: str,
|
105 |
structured_output: dict,
|
|
|
|
|
106 |
):
|
107 |
-
if eval_type == "
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
)
|
116 |
-
|
117 |
-
df = evaluate_custom(df, aspects_custom, prompt_template, structured_output)
|
118 |
-
return df
|
119 |
|
120 |
|
121 |
-
def
|
122 |
repo_id: str,
|
123 |
eval_type: str,
|
124 |
-
aspects_instruction: list[str],
|
125 |
aspects_instruction_response: list[str],
|
126 |
-
aspects_custom: list[str],
|
127 |
-
instruction_instruction: str,
|
128 |
instruction_instruction_response: str,
|
129 |
response_instruction_response: str,
|
130 |
prompt_template: str,
|
131 |
structured_output: dict,
|
132 |
):
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
eval_type,
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
structured_output,
|
145 |
)
|
146 |
-
return
|
147 |
|
148 |
|
149 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
org_name: str,
|
151 |
repo_name: str,
|
152 |
private: bool,
|
153 |
num_rows: int,
|
154 |
original_repo_id: str,
|
155 |
eval_type: str,
|
156 |
-
aspects_instruction: list[str],
|
157 |
aspects_instruction_response: list[str],
|
158 |
-
aspects_custom: list[str],
|
159 |
-
instruction_instruction: str,
|
160 |
instruction_instruction_response: str,
|
161 |
response_instruction_response: str,
|
162 |
prompt_template: str,
|
163 |
structured_output: dict,
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
aspects_instruction_response,
|
172 |
-
instruction_instruction_response,
|
173 |
-
response_instruction_response,
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
)
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
|
181 |
######################
|
@@ -184,123 +587,157 @@ def push_to_hub(
|
|
184 |
|
185 |
|
186 |
with gr.Blocks() as app:
|
187 |
-
gr.
|
188 |
-
|
189 |
-
with gr.
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
load_btn = gr.Button("Load dataset")
|
197 |
-
with gr.Column(scale=3):
|
198 |
-
search_out = gr.HTML(label="Dataset Preview")
|
199 |
-
|
200 |
-
gr.HTML("<hr>")
|
201 |
-
gr.Markdown("## 2. Configure your task")
|
202 |
-
with gr.Row(equal_height=False):
|
203 |
-
with gr.Column(scale=1):
|
204 |
-
eval_type = gr.Dropdown(
|
205 |
-
label="Evaluation Type",
|
206 |
-
choices=["instruction", "instruction-response", "custom-template"],
|
207 |
-
visible=False,
|
208 |
-
)
|
209 |
-
with gr.Tab("instruction") as tab_instruction:
|
210 |
-
aspects_instruction = define_evaluation_aspects("instruction")
|
211 |
-
instruction_instruction = gr.Dropdown(
|
212 |
-
label="Instruction Column", interactive=True
|
213 |
)
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
225 |
)
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
)
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
233 |
)
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
240 |
interactive=True,
|
241 |
)
|
242 |
-
|
243 |
-
label="
|
244 |
-
value=
|
245 |
-
language="json",
|
246 |
interactive=True,
|
|
|
247 |
)
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
252 |
)
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
scale=1,
|
279 |
-
)
|
280 |
-
btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2)
|
281 |
-
with gr.Column(scale=3):
|
282 |
-
success_message = gr.Markdown(visible=False)
|
283 |
|
284 |
-
search_in.submit(get_iframe, inputs=search_in, outputs=search_out)
|
285 |
load_btn.click(
|
286 |
-
load_dataset_from_hub,
|
287 |
inputs=[search_in],
|
288 |
outputs=[
|
289 |
dataframe,
|
290 |
-
instruction_instruction,
|
291 |
instruction_instruction_response,
|
292 |
response_instruction_response,
|
293 |
],
|
294 |
)
|
|
|
295 |
btn_apply_to_sample_dataset.click(
|
296 |
-
|
297 |
inputs=[
|
298 |
search_in,
|
299 |
eval_type,
|
300 |
-
aspects_instruction,
|
301 |
aspects_instruction_response,
|
302 |
-
aspects_custom,
|
303 |
-
instruction_instruction,
|
304 |
instruction_instruction_response,
|
305 |
response_instruction_response,
|
306 |
prompt_template,
|
@@ -308,8 +745,23 @@ with gr.Blocks() as app:
|
|
308 |
],
|
309 |
outputs=dataframe,
|
310 |
)
|
|
|
311 |
btn_push_to_hub.click(
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
inputs=[
|
314 |
org_name,
|
315 |
repo_name,
|
@@ -317,15 +769,36 @@ with gr.Blocks() as app:
|
|
317 |
num_rows,
|
318 |
search_in,
|
319 |
eval_type,
|
320 |
-
aspects_instruction,
|
321 |
aspects_instruction_response,
|
322 |
-
aspects_custom,
|
323 |
-
instruction_instruction,
|
324 |
instruction_instruction_response,
|
325 |
response_instruction_response,
|
326 |
prompt_template,
|
327 |
structured_output,
|
328 |
],
|
329 |
-
outputs=success_message,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
)
|
|
|
|
|
331 |
app.load(fn=get_org_dropdown, outputs=[org_name])
|
|
|
1 |
import json
|
2 |
+
import uuid
|
3 |
+
from typing import Union
|
4 |
|
5 |
+
import argilla as rg
|
6 |
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
import pandas as pd
|
9 |
+
from datasets import (
|
10 |
+
Dataset,
|
11 |
+
get_dataset_config_names,
|
12 |
+
get_dataset_split_names,
|
13 |
+
load_dataset,
|
14 |
+
)
|
15 |
+
from distilabel.distiset import Distiset
|
16 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
17 |
+
from huggingface_hub import HfApi
|
18 |
|
19 |
+
from src.distilabel_dataset_generator.apps.base import (
|
20 |
+
hide_success_message,
|
21 |
+
show_success_message,
|
22 |
+
validate_argilla_user_workspace_dataset,
|
23 |
+
validate_push_to_hub,
|
24 |
+
)
|
25 |
+
from src.distilabel_dataset_generator.pipelines.base import (
|
26 |
+
DEFAULT_BATCH_SIZE,
|
27 |
+
)
|
28 |
+
from src.distilabel_dataset_generator.pipelines.embeddings import (
|
29 |
+
get_embeddings,
|
30 |
+
get_sentence_embedding_dimensions,
|
31 |
+
)
|
32 |
+
from src.distilabel_dataset_generator.pipelines.eval import (
|
33 |
+
generate_pipeline_code,
|
34 |
+
get_custom_evaluator,
|
35 |
+
get_ultrafeedback_evaluator,
|
36 |
+
)
|
37 |
+
from src.distilabel_dataset_generator.utils import (
|
38 |
+
column_to_list,
|
39 |
+
extract_column_names,
|
40 |
+
get_argilla_client,
|
41 |
+
get_org_dropdown,
|
42 |
+
process_columns,
|
43 |
+
swap_visibility,
|
44 |
+
pad_or_truncate_list,
|
45 |
+
)
|
46 |
|
47 |
|
48 |
+
def get_iframe(hub_repo_id: str) -> str:
|
49 |
if not hub_repo_id:
|
50 |
+
raise gr.Error("Hub repository ID is required.")
|
51 |
+
|
52 |
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
|
53 |
iframe = f"""
|
54 |
<iframe
|
55 |
+
src="{url}"
|
56 |
+
frameborder="0"
|
57 |
+
width="100%"
|
58 |
+
height="600px"
|
59 |
+
></iframe>
|
60 |
+
"""
|
61 |
return iframe
|
62 |
|
63 |
|
64 |
+
def get_valid_columns(dataframe: pd.DataFrame):
|
65 |
+
instruction_valid_columns = []
|
66 |
+
response_valid_columns = []
|
67 |
+
|
68 |
+
for col in dataframe.columns:
|
69 |
+
sample_val = dataframe[col].iloc[0]
|
70 |
if isinstance(sample_val, str) or (
|
71 |
+
isinstance(sample_val, (list, np.ndarray))
|
72 |
+
and all(isinstance(item, dict) and "role" in item for item in sample_val)
|
73 |
):
|
74 |
+
instruction_valid_columns.append(col)
|
75 |
+
response_valid_columns.append(col)
|
76 |
+
if isinstance(sample_val, (list, np.ndarray)) and all(
|
77 |
+
isinstance(item, str) for item in sample_val
|
78 |
+
):
|
79 |
+
response_valid_columns.append(col)
|
80 |
|
81 |
+
return instruction_valid_columns, response_valid_columns
|
82 |
|
83 |
+
|
84 |
+
def load_dataset_from_hub(repo_id: str, num_rows: int = 10):
|
85 |
+
if not repo_id:
|
86 |
raise gr.Error("Hub repo id is required")
|
87 |
+
subsets = get_dataset_config_names(repo_id)
|
88 |
+
ds_dict = load_dataset(repo_id, subsets[0])
|
89 |
+
splits = get_dataset_split_names(repo_id, subsets[0])
|
90 |
ds = ds_dict[splits[0]]
|
91 |
if num_rows:
|
92 |
ds = ds.select(range(num_rows))
|
93 |
+
dataframe = ds.to_pandas()
|
94 |
+
instruction_valid_columns, response_valid_columns = get_valid_columns(dataframe)
|
|
|
95 |
return (
|
96 |
+
dataframe,
|
97 |
+
gr.Dropdown(choices=instruction_valid_columns, label="Instruction column"),
|
98 |
+
gr.Dropdown(choices=response_valid_columns, label="Response column"),
|
|
|
99 |
)
|
100 |
|
101 |
|
102 |
def define_evaluation_aspects(task_type: str):
|
103 |
+
if task_type == "ultrafeedback":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
return gr.Dropdown(
|
105 |
value=["overall-rating"],
|
106 |
choices=["helpfulness", "truthfulness", "overall-rating", "honesty"],
|
|
|
112 |
return gr.Dropdown(interactive=False, visible=False)
|
113 |
|
114 |
|
|
|
|
|
|
|
|
|
115 |
def evaluate_instruction_response(
|
116 |
+
dataframe: pd.DataFrame,
|
117 |
+
aspects: list[str],
|
118 |
+
instruction_column: str,
|
119 |
+
response_columns: str,
|
120 |
+
num_rows: int = 10,
|
121 |
+
is_sample: bool = False,
|
122 |
+
progress=gr.Progress(),
|
123 |
):
|
124 |
+
progress(0.0, desc="Evaluating instructions and responses")
|
125 |
+
data = process_columns(dataframe, instruction_column, response_columns)
|
126 |
+
num_generations = len(data[0]["generations"])
|
127 |
+
evaluated_results = []
|
128 |
+
for entry in data:
|
129 |
+
result_row = {
|
130 |
+
"instruction": entry["instruction"],
|
131 |
+
"generations": entry["generations"],
|
132 |
+
}
|
133 |
+
for aspect in aspects:
|
134 |
+
result_row[f"ratings_{aspect}"] = None
|
135 |
+
result_row[f"rationale_for_ratings_{aspect}"] = None
|
136 |
+
if aspect in ["truthfulness", "helpfulness"]:
|
137 |
+
result_row[f"type_{aspect}"] = None
|
138 |
+
result_row[f"rationale_for_type_{aspect}"] = None
|
139 |
+
result_row["model_name"] = None
|
140 |
+
evaluated_results.append(result_row)
|
141 |
+
|
142 |
+
batch_size = DEFAULT_BATCH_SIZE
|
143 |
+
total_steps: int = len(aspects) * num_rows
|
144 |
+
|
145 |
+
# evaluate instructions and responses
|
146 |
+
for aspect in aspects:
|
147 |
+
ultrafeedback_evaluator = get_ultrafeedback_evaluator(aspect, is_sample)
|
148 |
+
n_processed = 0
|
149 |
+
|
150 |
+
while n_processed < num_rows:
|
151 |
+
progress(
|
152 |
+
(len(aspects) * n_processed) / total_steps,
|
153 |
+
total=total_steps,
|
154 |
+
desc=f"Evaluating aspect: {aspect}",
|
155 |
+
)
|
156 |
+
|
157 |
+
remaining_rows = num_rows - n_processed
|
158 |
+
batch_size = min(batch_size, remaining_rows)
|
159 |
+
inputs = data[n_processed : n_processed + batch_size]
|
160 |
+
batch_results = list(ultrafeedback_evaluator.process(inputs=inputs))
|
161 |
+
for j, result in enumerate(batch_results[0]):
|
162 |
+
idx = n_processed + j
|
163 |
+
evaluated_results[idx][f"ratings_{aspect}"] = pad_or_truncate_list(
|
164 |
+
result.get("ratings"), num_generations
|
165 |
+
)
|
166 |
+
evaluated_results[idx]["model_name"] = result.get("model_name")
|
167 |
+
if aspect in ["truthfulness", "helpfulness"]:
|
168 |
+
evaluated_results[idx][f"type_{aspect}"] = pad_or_truncate_list(
|
169 |
+
result.get("types"), num_generations
|
170 |
+
)
|
171 |
+
evaluated_results[idx][f"rationale_for_type_{aspect}"] = (
|
172 |
+
pad_or_truncate_list(result.get("rationales"), num_generations)
|
173 |
+
)
|
174 |
+
evaluated_results[idx][f"rationale_for_ratings_{aspect}"] = (
|
175 |
+
pad_or_truncate_list(
|
176 |
+
result.get("rationales-for-ratings"), num_generations
|
177 |
+
)
|
178 |
+
)
|
179 |
+
else:
|
180 |
+
evaluated_results[idx][f"rationale_for_ratings_{aspect}"] = (
|
181 |
+
pad_or_truncate_list(result.get("rationales"), num_generations)
|
182 |
+
)
|
183 |
+
n_processed += batch_size
|
184 |
+
|
185 |
+
# create final dataset
|
186 |
+
dataframe = pd.DataFrame(evaluated_results)
|
187 |
+
progress(1.0, desc="Dataset evaluation completed")
|
188 |
+
return dataframe
|
189 |
|
190 |
|
191 |
def evaluate_custom(
|
192 |
+
dataframe: pd.DataFrame,
|
193 |
+
prompt_template: str,
|
194 |
+
structured_output: dict,
|
195 |
+
num_rows: int = 10,
|
196 |
+
is_sample: bool = False,
|
197 |
+
progress=gr.Progress(),
|
198 |
):
|
199 |
+
progress(0.0, desc="Evaluating dataset")
|
200 |
+
columns = extract_column_names(prompt_template)
|
201 |
+
input_columns = {column: column_to_list(dataframe, column) for column in columns}
|
202 |
+
|
203 |
+
custom_evaluator = get_custom_evaluator(
|
204 |
+
prompt_template, structured_output, columns, is_sample
|
205 |
+
)
|
206 |
+
batch_size = DEFAULT_BATCH_SIZE
|
207 |
+
|
208 |
+
# evaluate the data
|
209 |
+
n_processed = 0
|
210 |
+
evaluation_results = []
|
211 |
+
while n_processed < num_rows:
|
212 |
+
progress(
|
213 |
+
n_processed / num_rows,
|
214 |
+
desc="Evaluating dataset",
|
215 |
+
)
|
216 |
+
remaining_rows = num_rows - n_processed
|
217 |
+
batch_size = min(batch_size, remaining_rows)
|
218 |
+
|
219 |
+
inputs = []
|
220 |
+
for idx in range(n_processed, n_processed + batch_size):
|
221 |
+
input = {column: input_columns[column][idx] for column in input_columns}
|
222 |
+
inputs.append(input)
|
223 |
|
224 |
+
batch = list(custom_evaluator.process(inputs=inputs))
|
225 |
+
evaluation_results.extend(batch[0])
|
226 |
+
n_processed += batch_size
|
227 |
|
228 |
+
# create final dataset
|
229 |
+
distiset_results = []
|
230 |
+
for result in evaluation_results:
|
231 |
+
record = {key: result[key] for key in result if key != "distilabel_metadata"}
|
232 |
+
distiset_results.append(record)
|
233 |
+
|
234 |
+
dataframe = pd.DataFrame(distiset_results)
|
235 |
+
progress(1.0, desc="Dataset evaluation completed")
|
236 |
+
return dataframe
|
237 |
+
|
238 |
+
|
239 |
+
def _evaluate_dataset(
|
240 |
+
dataframe: pd.DataFrame,
|
241 |
eval_type: str,
|
|
|
|
|
242 |
aspects_instruction_response: list[str],
|
243 |
+
instruction_instruction_response: str,
|
244 |
+
response_instruction_response: str,
|
|
|
245 |
prompt_template: str,
|
246 |
structured_output: dict,
|
247 |
+
num_rows: int = 10,
|
248 |
+
is_sample: bool = False,
|
249 |
):
|
250 |
+
if eval_type == "ultrafeedback":
|
251 |
+
dataframe = evaluate_instruction_response(
|
252 |
+
dataframe=dataframe,
|
253 |
+
aspects=aspects_instruction_response,
|
254 |
+
instruction_column=instruction_instruction_response,
|
255 |
+
response_columns=response_instruction_response,
|
256 |
+
num_rows=num_rows,
|
257 |
+
is_sample=is_sample,
|
258 |
+
)
|
259 |
+
else:
|
260 |
+
dataframe = evaluate_custom(
|
261 |
+
dataframe=dataframe,
|
262 |
+
prompt_template=prompt_template,
|
263 |
+
structured_output=structured_output,
|
264 |
+
num_rows=num_rows,
|
265 |
+
is_sample=is_sample,
|
266 |
)
|
267 |
+
return dataframe
|
|
|
|
|
268 |
|
269 |
|
270 |
+
def evaluate_sample_dataset(
|
271 |
repo_id: str,
|
272 |
eval_type: str,
|
|
|
273 |
aspects_instruction_response: list[str],
|
|
|
|
|
274 |
instruction_instruction_response: str,
|
275 |
response_instruction_response: str,
|
276 |
prompt_template: str,
|
277 |
structured_output: dict,
|
278 |
):
|
279 |
+
dataframe, _, _ = load_dataset_from_hub(repo_id, num_rows=10)
|
280 |
+
dataframe = _evaluate_dataset(
|
281 |
+
dataframe=dataframe,
|
282 |
+
eval_type=eval_type,
|
283 |
+
aspects_instruction_response=aspects_instruction_response,
|
284 |
+
instruction_instruction_response=instruction_instruction_response,
|
285 |
+
response_instruction_response=response_instruction_response,
|
286 |
+
prompt_template=prompt_template,
|
287 |
+
structured_output=structured_output,
|
288 |
+
num_rows=10,
|
289 |
+
is_sample=True,
|
|
|
290 |
)
|
291 |
+
return dataframe
|
292 |
|
293 |
|
294 |
+
def push_dataset_to_hub(
|
295 |
+
dataframe: pd.DataFrame, org_name: str, repo_name: str, oauth_token, private
|
296 |
+
):
|
297 |
+
repo_id = validate_push_to_hub(org_name, repo_name)
|
298 |
+
distiset = Distiset({"default": Dataset.from_pandas(dataframe)})
|
299 |
+
distiset.push_to_hub(
|
300 |
+
repo_id=repo_id,
|
301 |
+
private=private,
|
302 |
+
include_script=False,
|
303 |
+
token=oauth_token.token,
|
304 |
+
create_pr=False,
|
305 |
+
)
|
306 |
+
|
307 |
+
|
308 |
+
def push_dataset(
|
309 |
org_name: str,
|
310 |
repo_name: str,
|
311 |
private: bool,
|
312 |
num_rows: int,
|
313 |
original_repo_id: str,
|
314 |
eval_type: str,
|
|
|
315 |
aspects_instruction_response: list[str],
|
|
|
|
|
316 |
instruction_instruction_response: str,
|
317 |
response_instruction_response: str,
|
318 |
prompt_template: str,
|
319 |
structured_output: dict,
|
320 |
+
oauth_token: Union[gr.OAuthToken, None] = None,
|
321 |
+
progress=gr.Progress(),
|
322 |
+
) -> pd.DataFrame:
|
323 |
+
dataframe, _, _ = load_dataset_from_hub(original_repo_id, num_rows=num_rows)
|
324 |
+
dataframe = _evaluate_dataset(
|
325 |
+
dataframe=dataframe,
|
326 |
+
eval_type=eval_type,
|
327 |
+
aspects_instruction_response=aspects_instruction_response,
|
328 |
+
instruction_instruction_response=instruction_instruction_response,
|
329 |
+
response_instruction_response=response_instruction_response,
|
330 |
+
prompt_template=prompt_template,
|
331 |
+
structured_output=structured_output,
|
332 |
+
num_rows=num_rows,
|
333 |
)
|
334 |
+
push_dataset_to_hub(dataframe, org_name, repo_name, oauth_token, private)
|
335 |
+
try:
|
336 |
+
progress(0.1, desc="Setting up user and workspace")
|
337 |
+
client = get_argilla_client()
|
338 |
+
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
|
339 |
+
if eval_type == "ultrafeedback":
|
340 |
+
num_generations = len((dataframe["generations"][0]))
|
341 |
+
fields = [
|
342 |
+
rg.ChatField(
|
343 |
+
name=f"chat_{i}",
|
344 |
+
title=f"Chat {i+1}",
|
345 |
+
description=f"User and assistant conversation for generation {i+1}",
|
346 |
+
)
|
347 |
+
for i in range(num_generations)
|
348 |
+
]
|
349 |
+
questions = []
|
350 |
+
for i in range(num_generations):
|
351 |
+
for aspect in aspects_instruction_response:
|
352 |
+
questions.append(
|
353 |
+
rg.RatingQuestion(
|
354 |
+
name=f"ratings_{aspect}_{i}",
|
355 |
+
values=list(range(11)),
|
356 |
+
title=f"Ratings for {aspect} for response {i+1}",
|
357 |
+
required=True,
|
358 |
+
)
|
359 |
+
)
|
360 |
+
questions.append(
|
361 |
+
rg.TextQuestion(
|
362 |
+
name=f"rationale_for_ratings_{aspect}_{i}",
|
363 |
+
title=f"Rationale for ratings for {aspect} for response {i+1}",
|
364 |
+
required=False,
|
365 |
+
use_markdown=True,
|
366 |
+
)
|
367 |
+
)
|
368 |
+
if aspect in ["truthfulness", "helpfulness"]:
|
369 |
+
questions.append(
|
370 |
+
rg.RatingQuestion(
|
371 |
+
name=f"type_{aspect}_{i}",
|
372 |
+
values=list(range(1, 6)),
|
373 |
+
title=f"The type of the response {i+1} for {aspect}",
|
374 |
+
required=True,
|
375 |
+
)
|
376 |
+
)
|
377 |
+
questions.append(
|
378 |
+
rg.TextQuestion(
|
379 |
+
name=f"rationale_for_type_{aspect}_{i}",
|
380 |
+
title=f"Rationale for type of the response {i+1} for {aspect}",
|
381 |
+
required=False,
|
382 |
+
use_markdown=True,
|
383 |
+
)
|
384 |
+
)
|
385 |
+
metadata = [
|
386 |
+
rg.IntegerMetadataProperty(
|
387 |
+
name="instruction_length", title="Instruction length"
|
388 |
+
),
|
389 |
+
]
|
390 |
+
for i in range(num_generations):
|
391 |
+
metadata.append(
|
392 |
+
rg.IntegerMetadataProperty(
|
393 |
+
name=f"response_{i}_length", title=f"Response {i+1} length"
|
394 |
+
)
|
395 |
+
)
|
396 |
+
vectors = [
|
397 |
+
rg.VectorField(
|
398 |
+
name="instruction_embeddings",
|
399 |
+
dimensions=get_sentence_embedding_dimensions(),
|
400 |
+
)
|
401 |
+
]
|
402 |
+
settings = rg.Settings(
|
403 |
+
fields=fields,
|
404 |
+
questions=questions,
|
405 |
+
metadata=metadata,
|
406 |
+
vectors=vectors,
|
407 |
+
guidelines="Please review the conversation and provide an evaluation.",
|
408 |
+
)
|
409 |
+
|
410 |
+
dataframe["instruction_length"] = dataframe["instruction"].apply(len)
|
411 |
+
for i in range(num_generations):
|
412 |
+
dataframe[f"response_{i}_length"] = dataframe["generations"].apply(
|
413 |
+
lambda gens: len(gens[i]) if i < len(gens) else 0
|
414 |
+
)
|
415 |
+
dataframe["instruction_embeddings"] = get_embeddings(
|
416 |
+
dataframe["instruction"].to_list()
|
417 |
+
)
|
418 |
+
|
419 |
+
progress(0.5, desc="Creating dataset")
|
420 |
+
rg_dataset = client.datasets(name=repo_name, workspace=hf_user)
|
421 |
+
if rg_dataset is None:
|
422 |
+
rg_dataset = rg.Dataset(
|
423 |
+
name=repo_name,
|
424 |
+
workspace=hf_user,
|
425 |
+
settings=settings,
|
426 |
+
client=client,
|
427 |
+
)
|
428 |
+
rg_dataset = rg_dataset.create()
|
429 |
+
|
430 |
+
progress(0.7, desc="Pushing dataset to Argilla")
|
431 |
+
hf_dataset = Dataset.from_pandas(dataframe)
|
432 |
+
records = []
|
433 |
+
for sample in hf_dataset:
|
434 |
+
fields = {}
|
435 |
+
metadata = {"instruction_length": sample.get("instruction_length", 0)}
|
436 |
+
vectors = {
|
437 |
+
"instruction_embeddings": sample.get("instruction_embeddings", [])
|
438 |
+
}
|
439 |
+
suggestions = []
|
440 |
+
generations = sample.get("generations", [])
|
441 |
+
for i in range(num_generations):
|
442 |
+
fields[f"chat_{i}"] = [
|
443 |
+
{"role": "user", "content": sample.get("instruction", "")},
|
444 |
+
{"role": "assistant", "content": generations[i]},
|
445 |
+
]
|
446 |
+
metadata[f"response_{i}_length"] = sample.get(
|
447 |
+
f"response_{i}_length", 0
|
448 |
+
)
|
449 |
+
|
450 |
+
for aspect in aspects_instruction_response:
|
451 |
+
ratings = sample.get(f"ratings_{aspect}", [])
|
452 |
+
rationales = sample.get(f"rationale_for_ratings__{aspect}", [])
|
453 |
+
|
454 |
+
rating_value = (
|
455 |
+
ratings[i]
|
456 |
+
if ratings and isinstance(ratings[i], int)
|
457 |
+
else None
|
458 |
+
)
|
459 |
+
rationale_value = (
|
460 |
+
rationales[i]
|
461 |
+
if rationales and isinstance(rationales[i], str)
|
462 |
+
else None
|
463 |
+
)
|
464 |
+
|
465 |
+
if rating_value is not None:
|
466 |
+
suggestions.append(
|
467 |
+
rg.Suggestion(
|
468 |
+
question_name=f"ratings_{aspect}_{i}",
|
469 |
+
value=rating_value,
|
470 |
+
)
|
471 |
+
)
|
472 |
+
if rationale_value is not None:
|
473 |
+
suggestions.append(
|
474 |
+
rg.Suggestion(
|
475 |
+
question_name=f"rationale_for_ratings_{aspect}_{i}",
|
476 |
+
value=rationale_value,
|
477 |
+
)
|
478 |
+
)
|
479 |
+
|
480 |
+
if aspect in ["truthfulness", "helpfulness"]:
|
481 |
+
types = sample.get(f"type_{aspect}", [])
|
482 |
+
rationale_types = sample.get(
|
483 |
+
f"rationale_for_type_{aspect}", []
|
484 |
+
)
|
485 |
+
|
486 |
+
type_value = (
|
487 |
+
types[i]
|
488 |
+
if types and isinstance(types[i], int)
|
489 |
+
else None
|
490 |
+
)
|
491 |
+
rationale_type_value = (
|
492 |
+
rationale_types[i]
|
493 |
+
if rationale_types
|
494 |
+
and isinstance(rationale_types[i], str)
|
495 |
+
else None
|
496 |
+
)
|
497 |
+
if type_value is not None:
|
498 |
+
suggestions.append(
|
499 |
+
rg.Suggestion(
|
500 |
+
question_name=f"type_{aspect}_{i}",
|
501 |
+
value=type_value,
|
502 |
+
)
|
503 |
+
)
|
504 |
+
if rationale_type_value is not None:
|
505 |
+
suggestions.append(
|
506 |
+
rg.Suggestion(
|
507 |
+
question_name=f"rationale_for_type_{aspect}_{i}",
|
508 |
+
value=rationale_type_value,
|
509 |
+
)
|
510 |
+
)
|
511 |
+
records.append(
|
512 |
+
rg.Record(
|
513 |
+
fields=fields,
|
514 |
+
metadata=metadata,
|
515 |
+
vectors=vectors,
|
516 |
+
suggestions=suggestions,
|
517 |
+
)
|
518 |
+
)
|
519 |
+
rg_dataset.records.log(records=records)
|
520 |
+
progress(1.0, desc="Dataset pushed to Argilla")
|
521 |
+
else:
|
522 |
+
columns = extract_column_names(prompt_template)
|
523 |
+
settings = rg.Settings(
|
524 |
+
fields=[
|
525 |
+
rg.TextField(
|
526 |
+
name=column,
|
527 |
+
title=column.capitalize(),
|
528 |
+
description="The column content",
|
529 |
+
)
|
530 |
+
for column in columns
|
531 |
+
],
|
532 |
+
questions=[
|
533 |
+
rg.TextQuestion(
|
534 |
+
name="evaluation",
|
535 |
+
title="Evaluation",
|
536 |
+
description="The generated evaluation",
|
537 |
+
use_markdown=True,
|
538 |
+
),
|
539 |
+
],
|
540 |
+
metadata=[
|
541 |
+
rg.IntegerMetadataProperty(
|
542 |
+
name=f"{column}_length", title=f"{column.capitalize()} length"
|
543 |
+
)
|
544 |
+
for column in columns
|
545 |
+
],
|
546 |
+
vectors=[
|
547 |
+
rg.VectorField(
|
548 |
+
name=f"{column}_embeddings",
|
549 |
+
dimensions=get_sentence_embedding_dimensions(),
|
550 |
+
)
|
551 |
+
for column in columns
|
552 |
+
],
|
553 |
+
guidelines="Please review, correct and provide an accurate evaluation.",
|
554 |
+
)
|
555 |
+
for column in columns:
|
556 |
+
dataframe[f"{column}_length"] = dataframe[column].apply(len)
|
557 |
+
dataframe[f"{column}_embeddings"] = get_embeddings(dataframe[column])
|
558 |
+
|
559 |
+
progress(0.5, desc="Creating dataset")
|
560 |
+
rg_dataset = client.datasets(name=repo_name, workspace=hf_user)
|
561 |
+
if rg_dataset is None:
|
562 |
+
rg_dataset = rg.Dataset(
|
563 |
+
name=repo_name,
|
564 |
+
workspace=hf_user,
|
565 |
+
settings=settings,
|
566 |
+
client=client,
|
567 |
+
)
|
568 |
+
rg_dataset = rg_dataset.create()
|
569 |
+
progress(0.7, desc="Pushing dataset to Argilla")
|
570 |
+
hf_dataset = Dataset.from_pandas(dataframe)
|
571 |
+
rg_dataset.records.log(
|
572 |
+
records=hf_dataset, mapping={"generation": "evaluation"}
|
573 |
+
)
|
574 |
+
progress(1.0, desc="Dataset pushed to Argilla")
|
575 |
+
except Exception as e:
|
576 |
+
raise gr.Error(f"Error pushing dataset to Argilla: {e}")
|
577 |
+
return ""
|
578 |
+
|
579 |
+
|
580 |
+
def update_pipeline_code_visibility():
|
581 |
+
return {pipeline_code_ui: gr.Accordion(visible=True)}
|
582 |
|
583 |
|
584 |
######################
|
|
|
587 |
|
588 |
|
589 |
with gr.Blocks() as app:
|
590 |
+
with gr.Column() as main_ui:
|
591 |
+
gr.Markdown("## 1. Select your input dataset")
|
592 |
+
with gr.Row(equal_height=False):
|
593 |
+
with gr.Column(scale=1):
|
594 |
+
search_in = HuggingfaceHubSearch(
|
595 |
+
label="Search",
|
596 |
+
placeholder="Search for a dataset",
|
597 |
+
search_type="dataset",
|
598 |
+
sumbit_on_select=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
)
|
600 |
+
load_btn = gr.Button("Load dataset", variant="primary")
|
601 |
+
with gr.Column(scale=3):
|
602 |
+
search_out = gr.HTML(label="Dataset preview")
|
603 |
+
|
604 |
+
gr.HTML(value="<hr>")
|
605 |
+
gr.Markdown(value="## 2. Configure your task")
|
606 |
+
with gr.Row(equal_height=False):
|
607 |
+
with gr.Column(scale=1):
|
608 |
+
eval_type = gr.Dropdown(
|
609 |
+
label="Evaluation type",
|
610 |
+
choices=["ultrafeedback", "custom"],
|
611 |
+
value="ultrafeedback",
|
612 |
+
multiselect=False,
|
613 |
+
visible=False,
|
614 |
)
|
615 |
+
with gr.Tab("ultrafeedback") as tab_instruction_response:
|
616 |
+
aspects_instruction_response = define_evaluation_aspects(
|
617 |
+
"ultrafeedback"
|
618 |
+
)
|
619 |
+
instruction_instruction_response = gr.Dropdown(
|
620 |
+
label="Instruction Column",
|
621 |
+
interactive=True,
|
622 |
+
multiselect=False,
|
623 |
+
allow_custom_value=False,
|
624 |
+
)
|
625 |
+
response_instruction_response = gr.Dropdown(
|
626 |
+
label="Response Column",
|
627 |
+
interactive=True,
|
628 |
+
multiselect=True,
|
629 |
+
allow_custom_value=False,
|
630 |
+
)
|
631 |
+
tab_instruction_response.select(
|
632 |
+
fn=lambda: "ultrafeedback",
|
633 |
+
inputs=[],
|
634 |
+
outputs=[eval_type],
|
635 |
+
)
|
636 |
+
with gr.Tab("custom") as tab_custom:
|
637 |
+
aspects_custom = define_evaluation_aspects("custom")
|
638 |
+
prompt_template = gr.Code(
|
639 |
+
label="Prompt template",
|
640 |
+
value="Evaluate {{column_1}} based on {{column_2}}.",
|
641 |
+
language="markdown",
|
642 |
+
interactive=True,
|
643 |
+
)
|
644 |
+
structured_output = gr.Code(
|
645 |
+
label="Structured output",
|
646 |
+
value=json.dumps(
|
647 |
+
{
|
648 |
+
"type": "object",
|
649 |
+
"properties": {
|
650 |
+
"quality": {"type": "integer"},
|
651 |
+
"clarity": {"type": "integer"},
|
652 |
+
"relevance": {"type": "integer"},
|
653 |
+
},
|
654 |
+
},
|
655 |
+
indent=4,
|
656 |
+
),
|
657 |
+
language="json",
|
658 |
+
interactive=True,
|
659 |
+
)
|
660 |
+
tab_custom.select(
|
661 |
+
fn=lambda: "custom",
|
662 |
+
inputs=[],
|
663 |
+
outputs=[eval_type],
|
664 |
+
)
|
665 |
+
btn_apply_to_sample_dataset = gr.Button(
|
666 |
+
"Refresh dataset", variant="secondary", size="sm"
|
667 |
)
|
668 |
+
with gr.Column(scale=3):
|
669 |
+
dataframe = gr.Dataframe(
|
670 |
+
headers=["prompt", "completion", "evaluation"],
|
671 |
+
wrap=False,
|
672 |
+
height=500,
|
673 |
+
interactive=False,
|
674 |
)
|
675 |
+
|
676 |
+
gr.HTML(value="<hr>")
|
677 |
+
gr.Markdown(value="## 3. Evaluate your dataset")
|
678 |
+
with gr.Row(equal_height=False):
|
679 |
+
with gr.Column(scale=2):
|
680 |
+
org_name = get_org_dropdown()
|
681 |
+
repo_name = gr.Textbox(
|
682 |
+
label="Repo name",
|
683 |
+
placeholder="dataset_name",
|
684 |
+
value=f"my-distiset-{str(uuid.uuid4())[:8]}",
|
685 |
interactive=True,
|
686 |
)
|
687 |
+
num_rows = gr.Number(
|
688 |
+
label="Number of rows",
|
689 |
+
value=10,
|
|
|
690 |
interactive=True,
|
691 |
+
scale=1,
|
692 |
)
|
693 |
+
private = gr.Checkbox(
|
694 |
+
label="Private dataset",
|
695 |
+
value=False,
|
696 |
+
interactive=True,
|
697 |
+
scale=1,
|
698 |
)
|
699 |
+
btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2)
|
700 |
+
with gr.Column(scale=3):
|
701 |
+
success_message = gr.Markdown(visible=True)
|
702 |
+
with gr.Accordion(
|
703 |
+
"Do you want to go further? Customize and run with Distilabel",
|
704 |
+
open=False,
|
705 |
+
visible=False,
|
706 |
+
) as pipeline_code_ui:
|
707 |
+
code = generate_pipeline_code(
|
708 |
+
repo_id=search_in.value,
|
709 |
+
aspects=aspects_instruction_response.value,
|
710 |
+
instruction_column=instruction_instruction_response,
|
711 |
+
response_columns=response_instruction_response,
|
712 |
+
prompt_template=prompt_template.value,
|
713 |
+
structured_output=structured_output.value,
|
714 |
+
num_rows=num_rows.value,
|
715 |
+
eval_type=eval_type.value,
|
716 |
+
)
|
717 |
+
pipeline_code = gr.Code(
|
718 |
+
value=code,
|
719 |
+
language="python",
|
720 |
+
label="Distilabel Pipeline Code",
|
721 |
+
)
|
722 |
+
|
723 |
+
search_in.submit(fn=get_iframe, inputs=search_in, outputs=search_out)
|
|
|
|
|
|
|
|
|
|
|
724 |
|
|
|
725 |
load_btn.click(
|
726 |
+
fn=load_dataset_from_hub,
|
727 |
inputs=[search_in],
|
728 |
outputs=[
|
729 |
dataframe,
|
|
|
730 |
instruction_instruction_response,
|
731 |
response_instruction_response,
|
732 |
],
|
733 |
)
|
734 |
+
|
735 |
btn_apply_to_sample_dataset.click(
|
736 |
+
fn=evaluate_sample_dataset,
|
737 |
inputs=[
|
738 |
search_in,
|
739 |
eval_type,
|
|
|
740 |
aspects_instruction_response,
|
|
|
|
|
741 |
instruction_instruction_response,
|
742 |
response_instruction_response,
|
743 |
prompt_template,
|
|
|
745 |
],
|
746 |
outputs=dataframe,
|
747 |
)
|
748 |
+
|
749 |
btn_push_to_hub.click(
|
750 |
+
fn=validate_argilla_user_workspace_dataset,
|
751 |
+
inputs=[repo_name],
|
752 |
+
outputs=[success_message],
|
753 |
+
show_progress=True,
|
754 |
+
).then(
|
755 |
+
fn=validate_push_to_hub,
|
756 |
+
inputs=[org_name, repo_name],
|
757 |
+
outputs=[success_message],
|
758 |
+
show_progress=True,
|
759 |
+
).success(
|
760 |
+
fn=hide_success_message,
|
761 |
+
outputs=[success_message],
|
762 |
+
show_progress=True,
|
763 |
+
).success(
|
764 |
+
fn=push_dataset,
|
765 |
inputs=[
|
766 |
org_name,
|
767 |
repo_name,
|
|
|
769 |
num_rows,
|
770 |
search_in,
|
771 |
eval_type,
|
|
|
772 |
aspects_instruction_response,
|
|
|
|
|
773 |
instruction_instruction_response,
|
774 |
response_instruction_response,
|
775 |
prompt_template,
|
776 |
structured_output,
|
777 |
],
|
778 |
+
outputs=[success_message],
|
779 |
+
show_progress=True,
|
780 |
+
).success(
|
781 |
+
fn=show_success_message,
|
782 |
+
inputs=[org_name, repo_name],
|
783 |
+
outputs=[success_message],
|
784 |
+
).success(
|
785 |
+
fn=generate_pipeline_code,
|
786 |
+
inputs=[
|
787 |
+
search_in,
|
788 |
+
aspects_instruction_response,
|
789 |
+
instruction_instruction_response,
|
790 |
+
response_instruction_response,
|
791 |
+
prompt_template,
|
792 |
+
structured_output,
|
793 |
+
num_rows,
|
794 |
+
eval_type,
|
795 |
+
],
|
796 |
+
outputs=[pipeline_code],
|
797 |
+
).success(
|
798 |
+
fn=update_pipeline_code_visibility,
|
799 |
+
inputs=[],
|
800 |
+
outputs=[pipeline_code_ui],
|
801 |
)
|
802 |
+
|
803 |
+
app.load(fn=swap_visibility, outputs=main_ui)
|
804 |
app.load(fn=get_org_dropdown, outputs=[org_name])
|
src/distilabel_dataset_generator/apps/sft.py
CHANGED
@@ -499,6 +499,10 @@ with gr.Blocks(css=_LOGGED_OUT_CSS) as app:
|
|
499 |
fn=show_success_message,
|
500 |
inputs=[org_name, repo_name],
|
501 |
outputs=[success_message],
|
|
|
|
|
|
|
|
|
502 |
).success(
|
503 |
fn=update_pipeline_code_visibility,
|
504 |
inputs=[],
|
|
|
499 |
fn=show_success_message,
|
500 |
inputs=[org_name, repo_name],
|
501 |
outputs=[success_message],
|
502 |
+
).success(
|
503 |
+
fn=generate_pipeline_code,
|
504 |
+
inputs=[system_prompt, num_turns, num_rows],
|
505 |
+
outputs=[pipeline_code],
|
506 |
).success(
|
507 |
fn=update_pipeline_code_visibility,
|
508 |
inputs=[],
|
src/distilabel_dataset_generator/apps/textcat.py
CHANGED
@@ -526,6 +526,17 @@ with gr.Blocks(css=_LOGGED_OUT_CSS) as app:
|
|
526 |
fn=show_success_message,
|
527 |
inputs=[org_name, repo_name],
|
528 |
outputs=[success_message],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
).success(
|
530 |
fn=update_pipeline_code_visibility,
|
531 |
inputs=[],
|
|
|
526 |
fn=show_success_message,
|
527 |
inputs=[org_name, repo_name],
|
528 |
outputs=[success_message],
|
529 |
+
).success(
|
530 |
+
fn=generate_pipeline_code,
|
531 |
+
inputs=[
|
532 |
+
system_prompt,
|
533 |
+
difficulty,
|
534 |
+
clarity,
|
535 |
+
labels,
|
536 |
+
num_labels,
|
537 |
+
num_rows,
|
538 |
+
],
|
539 |
+
outputs=[pipeline_code],
|
540 |
).success(
|
541 |
fn=update_pipeline_code_visibility,
|
542 |
inputs=[],
|
src/distilabel_dataset_generator/pipelines/eval.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from datasets import get_dataset_config_names, get_dataset_split_names
|
4 |
+
from distilabel.llms import InferenceEndpointsLLM
|
5 |
+
from distilabel.steps.tasks import (
|
6 |
+
UltraFeedback,
|
7 |
+
TextGeneration,
|
8 |
+
)
|
9 |
+
|
10 |
+
from src.distilabel_dataset_generator.pipelines.base import (
|
11 |
+
MODEL,
|
12 |
+
_get_next_api_key,
|
13 |
+
)
|
14 |
+
from src.distilabel_dataset_generator.utils import extract_column_names
|
15 |
+
|
16 |
+
|
17 |
+
def get_ultrafeedback_evaluator(aspect, is_sample):
|
18 |
+
ultrafeedback_evaluator = UltraFeedback(
|
19 |
+
llm=InferenceEndpointsLLM(
|
20 |
+
model_id=MODEL,
|
21 |
+
tokenizer_id=MODEL,
|
22 |
+
api_key=_get_next_api_key(),
|
23 |
+
generation_kwargs={
|
24 |
+
"temperature": 0.7,
|
25 |
+
"max_new_tokens": 256 if is_sample else 2048,
|
26 |
+
},
|
27 |
+
),
|
28 |
+
aspect=aspect,
|
29 |
+
)
|
30 |
+
ultrafeedback_evaluator.load()
|
31 |
+
return ultrafeedback_evaluator
|
32 |
+
|
33 |
+
|
34 |
+
def get_custom_evaluator(prompt_template, structured_output, columns, is_sample):
|
35 |
+
custom_evaluator = TextGeneration(
|
36 |
+
llm=InferenceEndpointsLLM(
|
37 |
+
model_id=MODEL,
|
38 |
+
tokenizer_id=MODEL,
|
39 |
+
api_key=_get_next_api_key(),
|
40 |
+
structured_output={"format": "json", "schema": structured_output},
|
41 |
+
generation_kwargs={
|
42 |
+
"temperature": 0.7,
|
43 |
+
"max_new_tokens": 256 if is_sample else 2048,
|
44 |
+
},
|
45 |
+
),
|
46 |
+
template=prompt_template,
|
47 |
+
columns=columns
|
48 |
+
)
|
49 |
+
custom_evaluator.load()
|
50 |
+
return custom_evaluator
|
51 |
+
|
52 |
+
|
53 |
+
def generate_ultrafeedback_pipeline_code(
|
54 |
+
repo_id, subset, split, aspects, instruction_column, response_columns, num_rows
|
55 |
+
):
|
56 |
+
if len(aspects) == 1:
|
57 |
+
code = f"""
|
58 |
+
# Requirements: `pip install distilabel[hf-inference-endpoints]`
|
59 |
+
import os
|
60 |
+
from datasets import load_dataset
|
61 |
+
from distilabel.pipeline import Pipeline
|
62 |
+
from distilabel.steps import LoadDataFromDicts
|
63 |
+
from distilabel.steps.tasks import UltraFeedback
|
64 |
+
from distilabel.llms import InferenceEndpointsLLM
|
65 |
+
|
66 |
+
MODEL = "{MODEL}"
|
67 |
+
os.environ["HF_TOKEN"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
68 |
+
|
69 |
+
hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}[:{num_rows}]")
|
70 |
+
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries
|
71 |
+
|
72 |
+
with Pipeline(name="ultrafeedback") as pipeline:
|
73 |
+
|
74 |
+
load_the_dataset = LoadDataFromDicts(
|
75 |
+
data = data,
|
76 |
+
)
|
77 |
+
|
78 |
+
ultrafeedback_evaluator = UltraFeedback(
|
79 |
+
llm=InferenceEndpointsLLM(
|
80 |
+
model_id=MODEL,
|
81 |
+
tokenizer_id=MODEL,
|
82 |
+
api_key=os.environ["HF_TOKEN"],
|
83 |
+
generation_kwargs={{
|
84 |
+
"temperature": 0.7,
|
85 |
+
"max_new_tokens": 2048,
|
86 |
+
}},
|
87 |
+
),
|
88 |
+
aspect=aspect,
|
89 |
+
)
|
90 |
+
|
91 |
+
load_the_dataset >> ultrafeedback_evaluator
|
92 |
+
|
93 |
+
if __name__ == "__main__":
|
94 |
+
distiset = pipeline.run()
|
95 |
+
"""
|
96 |
+
else:
|
97 |
+
code = f"""
|
98 |
+
# Requirements: `pip install distilabel[hf-inference-endpoints]`
|
99 |
+
import os
|
100 |
+
from distilabel.pipeline import Pipeline
|
101 |
+
from distilabel.steps import LoadDataFromDicts, CombineOutputs
|
102 |
+
from distilabel.steps.tasks import UltraFeedback
|
103 |
+
from distilabel.llms import InferenceEndpointsLLM
|
104 |
+
|
105 |
+
MODEL = "{MODEL}"
|
106 |
+
os.environ["HF_TOKEN"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
107 |
+
|
108 |
+
hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}")
|
109 |
+
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries
|
110 |
+
|
111 |
+
with Pipeline(name="ultrafeedback") as pipeline:
|
112 |
+
|
113 |
+
load_the_dataset = LoadDataFromDicts(
|
114 |
+
data = data,
|
115 |
+
)
|
116 |
+
|
117 |
+
tasks = []
|
118 |
+
for aspect in aspects:
|
119 |
+
evaluate_responses = UltraFeedback(
|
120 |
+
name=f"evaluate-responses-{{aspect}}",
|
121 |
+
aspect=aspect,
|
122 |
+
llm=InferenceEndpointsLLM(
|
123 |
+
model_id=MODEL,
|
124 |
+
tokenizer_id=MODEL,
|
125 |
+
api_key=os.environ["HF_TOKEN"],
|
126 |
+
generation_kwargs={{
|
127 |
+
"temperature": 0.7,
|
128 |
+
"max_new_tokens": 2048,
|
129 |
+
}},
|
130 |
+
output_mappings={{
|
131 |
+
"ratings": f"ratings_{{aspect}}",
|
132 |
+
"types": f"type_{{aspect}}",
|
133 |
+
"rationales": f"rationales_for_types_{{aspect}}",
|
134 |
+
"rationales-for-ratings": f"rationales_for_ratings_{{aspect}}",
|
135 |
+
}} if aspect in ["truthfulness", "helpfulness"] else {{"rationales": f"rationales_{{aspect}}", "ratings": f"ratings_{{aspect}}"}},
|
136 |
+
)
|
137 |
+
tasks.append(evaluate_responses)
|
138 |
+
|
139 |
+
combine_outputs = CombineOutputs()
|
140 |
+
|
141 |
+
load_the_dataset >> tasks >> combine_outputs
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
distiset = pipeline.run()
|
145 |
+
"""
|
146 |
+
return code
|
147 |
+
|
148 |
+
|
149 |
+
def generate_custom_pipeline_code(
|
150 |
+
repo_id, subset, split, prompt_template, structured_output, num_rows
|
151 |
+
):
|
152 |
+
columns = extract_column_names(structured_output)
|
153 |
+
code = f"""
|
154 |
+
# Requirements: `pip install distilabel[hf-inference-endpoints, instructor]`
|
155 |
+
import os
|
156 |
+
from distilabel.pipeline import Pipeline
|
157 |
+
from distilabel.steps import LoadDataFromHub
|
158 |
+
from distilabel.steps.tasks import TextGeneration
|
159 |
+
from distilabel.llms import InferenceEndpointsLLM
|
160 |
+
|
161 |
+
MODEL = "{MODEL}"
|
162 |
+
CUSTOM_TEMPLATE = "{prompt_template}"
|
163 |
+
os.environ["HF_TOKEN"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
|
164 |
+
|
165 |
+
with Pipeline(name="custom-evaluation") as pipeline:
|
166 |
+
load_the_dataset = LoadDataFromHub(
|
167 |
+
repo_id="{repo_id}",
|
168 |
+
config="{subset}",
|
169 |
+
split="{split}",
|
170 |
+
num_examples={num_rows},
|
171 |
+
batch_size=2
|
172 |
+
)
|
173 |
+
custom_evaluator = TextGeneration(
|
174 |
+
llm=InferenceEndpointsLLM(
|
175 |
+
model_id=MODEL,
|
176 |
+
tokenizer_id=MODEL,
|
177 |
+
api_key=os.environ["HF_TOKEN"],
|
178 |
+
structured_output={{"format": "json", "schema": {structured_output}}},
|
179 |
+
generation_kwargs={{
|
180 |
+
"temperature": 0.7,
|
181 |
+
"max_new_tokens": 2048,
|
182 |
+
}},
|
183 |
+
),
|
184 |
+
template=CUSTOM_TEMPLATE,
|
185 |
+
columns={columns}
|
186 |
+
)
|
187 |
+
|
188 |
+
load_the_dataset >> custom_evaluator
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
distiset = pipeline.run()
|
192 |
+
"""
|
193 |
+
return code
|
194 |
+
|
195 |
+
|
196 |
+
def generate_pipeline_code(repo_id, aspects, instruction_column, response_columns, prompt_template, structured_output, num_rows, eval_type):
|
197 |
+
if repo_id is None:
|
198 |
+
subset = "default"
|
199 |
+
split = "train"
|
200 |
+
else:
|
201 |
+
subset = get_dataset_config_names(repo_id)[0]
|
202 |
+
split = get_dataset_split_names(repo_id, subset)[0]
|
203 |
+
if eval_type == "ultrafeedback":
|
204 |
+
return generate_ultrafeedback_pipeline_code(repo_id, subset, split, aspects, instruction_column, response_columns, num_rows)
|
205 |
+
return generate_custom_pipeline_code(repo_id, subset, split, prompt_template, structured_output, num_rows)
|
src/distilabel_dataset_generator/utils.py
CHANGED
@@ -1,8 +1,11 @@
|
|
|
|
1 |
import os
|
2 |
from typing import List, Optional, Union
|
3 |
|
4 |
import argilla as rg
|
5 |
import gradio as gr
|
|
|
|
|
6 |
from gradio.oauth import (
|
7 |
OAUTH_CLIENT_ID,
|
8 |
OAUTH_CLIENT_SECRET,
|
@@ -11,6 +14,7 @@ from gradio.oauth import (
|
|
11 |
get_space,
|
12 |
)
|
13 |
from huggingface_hub import whoami
|
|
|
14 |
|
15 |
_LOGGED_OUT_CSS = ".main_ui_logged_out{opacity: 0.3; pointer-events: none}"
|
16 |
|
@@ -132,6 +136,91 @@ def get_argilla_client() -> Union[rg.Argilla, None]:
|
|
132 |
except Exception:
|
133 |
return None
|
134 |
|
135 |
-
|
136 |
def get_preprocess_labels(labels: Optional[List[str]]) -> List[str]:
|
137 |
return list(set([label.lower().strip() for label in labels])) if labels else []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
import os
|
3 |
from typing import List, Optional, Union
|
4 |
|
5 |
import argilla as rg
|
6 |
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
from gradio.oauth import (
|
10 |
OAUTH_CLIENT_ID,
|
11 |
OAUTH_CLIENT_SECRET,
|
|
|
14 |
get_space,
|
15 |
)
|
16 |
from huggingface_hub import whoami
|
17 |
+
from jinja2 import Environment, meta
|
18 |
|
19 |
_LOGGED_OUT_CSS = ".main_ui_logged_out{opacity: 0.3; pointer-events: none}"
|
20 |
|
|
|
136 |
except Exception:
|
137 |
return None
|
138 |
|
|
|
139 |
def get_preprocess_labels(labels: Optional[List[str]]) -> List[str]:
|
140 |
return list(set([label.lower().strip() for label in labels])) if labels else []
|
141 |
+
|
142 |
+
|
143 |
+
def column_to_list(dataframe: pd.DataFrame, column_name: str) -> List[str]:
|
144 |
+
if column_name in dataframe.columns:
|
145 |
+
return dataframe[column_name].tolist()
|
146 |
+
else:
|
147 |
+
raise ValueError(f"Column '{column_name}' does not exist.")
|
148 |
+
|
149 |
+
|
150 |
+
def process_columns(
|
151 |
+
dataframe,
|
152 |
+
instruction_column: str,
|
153 |
+
response_columns: Union[str, List[str]],
|
154 |
+
) -> List[dict]:
|
155 |
+
instruction_column = [instruction_column]
|
156 |
+
if isinstance(response_columns, str):
|
157 |
+
response_columns = [response_columns]
|
158 |
+
|
159 |
+
data = []
|
160 |
+
for _, row in dataframe.iterrows():
|
161 |
+
instruction = ""
|
162 |
+
for col in instruction_column:
|
163 |
+
value = row[col]
|
164 |
+
if isinstance(value, (list, np.ndarray)):
|
165 |
+
user_contents = [d["content"] for d in value if d.get("role") == "user"]
|
166 |
+
if user_contents:
|
167 |
+
instruction = user_contents[-1]
|
168 |
+
elif isinstance(value, str):
|
169 |
+
try:
|
170 |
+
parsed_message = json.loads(value)
|
171 |
+
user_contents = [
|
172 |
+
d["content"] for d in parsed_message if d.get("role") == "user"
|
173 |
+
]
|
174 |
+
if user_contents:
|
175 |
+
instruction = user_contents[-1]
|
176 |
+
except json.JSONDecodeError:
|
177 |
+
instruction = value
|
178 |
+
else:
|
179 |
+
instruction = ""
|
180 |
+
|
181 |
+
generations = []
|
182 |
+
for col in response_columns:
|
183 |
+
value = row[col]
|
184 |
+
if isinstance(value, (list, np.ndarray)):
|
185 |
+
if all(isinstance(item, dict) and "role" in item for item in value):
|
186 |
+
assistant_contents = [
|
187 |
+
d["content"] for d in value if d.get("role") == "assistant"
|
188 |
+
]
|
189 |
+
if assistant_contents:
|
190 |
+
generations.append(assistant_contents[-1])
|
191 |
+
else:
|
192 |
+
generations.extend(value)
|
193 |
+
elif isinstance(value, str):
|
194 |
+
try:
|
195 |
+
parsed_message = json.loads(value)
|
196 |
+
assistant_contents = [
|
197 |
+
d["content"]
|
198 |
+
for d in parsed_message
|
199 |
+
if d.get("role") == "assistant"
|
200 |
+
]
|
201 |
+
if assistant_contents:
|
202 |
+
generations.append(assistant_contents[-1])
|
203 |
+
except json.JSONDecodeError:
|
204 |
+
generations.append(value)
|
205 |
+
else:
|
206 |
+
pass
|
207 |
+
|
208 |
+
data.append({"instruction": instruction, "generations": generations})
|
209 |
+
|
210 |
+
return data
|
211 |
+
|
212 |
+
|
213 |
+
def extract_column_names(prompt_template: str) -> List[str]:
|
214 |
+
env = Environment()
|
215 |
+
parsed_content = env.parse(prompt_template)
|
216 |
+
variables = meta.find_undeclared_variables(parsed_content)
|
217 |
+
return list(variables)
|
218 |
+
|
219 |
+
|
220 |
+
def pad_or_truncate_list(lst, target_length):
|
221 |
+
lst = lst or []
|
222 |
+
lst_length = len(lst)
|
223 |
+
if lst_length >= target_length:
|
224 |
+
return lst[-target_length:]
|
225 |
+
else:
|
226 |
+
return lst + [None] * (target_length - lst_length)
|