File size: 12,557 Bytes
47b193f
311dc3a
 
 
 
167137b
03480fc
 
 
167137b
 
 
2f78375
167137b
4ae93a7
4df8d2a
 
6bd3956
 
167137b
 
03480fc
 
 
 
 
 
47b193f
 
 
03480fc
 
 
 
 
3f7c9ec
03480fc
 
167137b
 
 
 
 
 
 
 
 
 
 
 
ec01232
 
 
167137b
 
 
 
 
 
 
 
 
 
 
 
4df8d2a
 
 
167137b
 
 
 
4df8d2a
 
 
 
 
 
 
 
 
 
 
 
167137b
 
 
 
 
 
 
311dc3a
 
167137b
 
 
 
311dc3a
 
2f78375
 
 
 
4ae93a7
2f78375
8be8621
2f78375
167137b
ccbe31d
167137b
 
 
4ae93a7
 
 
 
 
7c48ff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8be8621
2f78375
167137b
2f78375
8be8621
 
 
2f78375
167137b
993d09a
 
167137b
 
6bd3956
ccbe31d
 
 
 
167137b
4df8d2a
0bc5161
167137b
 
 
 
 
 
2f78375
167137b
0bc5161
167137b
006f173
0bc5161
 
 
 
 
 
 
 
167137b
 
 
311dc3a
6bd3956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167137b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c48ff5
167137b
 
bce77cb
 
 
 
 
 
 
 
 
 
 
3c49dce
 
 
 
3a19901
051e909
3c49dce
 
 
 
 
 
bce77cb
 
3c49dce
 
 
 
d4450b3
d2967a8
84c43bd
0bc5161
 
d4450b3
 
 
 
 
 
 
 
 
3c49dce
 
 
 
8be8621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32bb93d
8be8621
32bb93d
8be8621
 
 
167137b
 
ccbe31d
7c48ff5
 
6bd3956
7c48ff5
 
 
ccbe31d
167137b
ccbe31d
8be8621
ccbe31d
7c48ff5
 
 
 
 
ccbe31d
167137b
ccbe31d
8be8621
ccbe31d
7c48ff5
 
 
 
 
ccbe31d
167137b
ccbe31d
8be8621
ccbe31d
7c48ff5
 
 
 
 
ccbe31d
167137b
ccbe31d
8be8621
ccbe31d
7c48ff5
 
 
 
 
ccbe31d
2f78375
ccbe31d
8be8621
 
7c48ff5
 
 
 
 
8be8621
 
 
 
ccbe31d
7c48ff5
 
 
 
 
311dc3a
0bc5161
 
 
4733a9c
0bc5161
 
 
 
 
167137b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import pickle

import pandas as pd
import gradio as gr
import plotly.express as px
from datetime import datetime
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler

from utils import (
    KEY_TO_CATEGORY_NAME,
    CAT_NAME_TO_EXPLANATION,
    download_latest_data_from_space,
    get_constants,
    update_release_date_mapping,
    format_data,
    get_trendlines,
    find_crossover_point,
)

###################
### Initialize scheduler
###################


def restart_space():
    HfApi(token=os.getenv("HF_TOKEN", None)).restart_space(
        repo_id="andrewrreed/closed-vs-open-arena-elo"
    )
    print(f"Space restarted on {datetime.now()}")


# restart the space every day at 9am
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "cron", day_of_week="mon-sun", hour=7, minute=0)
scheduler.start()

###################
### Load Data
###################

# gather ELO data
latest_elo_file_local = download_latest_data_from_space(
    repo_id="lmsys/chatbot-arena-leaderboard", file_type="pkl"
)

with open(latest_elo_file_local, "rb") as fin:
    elo_results = pickle.load(fin)

# TO-DO: need to also include vision
elo_results = elo_results["text"]

arena_dfs = {}
for k in KEY_TO_CATEGORY_NAME.keys():
    if k not in elo_results:
        continue
    arena_dfs[KEY_TO_CATEGORY_NAME[k]] = elo_results[k]["leaderboard_table_df"]

# gather open llm leaderboard data
latest_leaderboard_file_local = download_latest_data_from_space(
    repo_id="lmsys/chatbot-arena-leaderboard", file_type="csv"
)
leaderboard_df = pd.read_csv(latest_leaderboard_file_local)

# load release date mapping data
release_date_mapping = pd.read_json("release_date_mapping.json", orient="records")

###################
### Prepare Data
###################

# update release date mapping with new models
# check for new models in ELO data
new_model_keys_to_add = [
    model
    for model in arena_dfs["Overall"].index.to_list()
    if model not in release_date_mapping["key"].to_list()
]
if new_model_keys_to_add:
    release_date_mapping = update_release_date_mapping(
        new_model_keys_to_add, leaderboard_df, release_date_mapping
    )

# merge leaderboard data with ELO data
merged_dfs = {}
for k, v in arena_dfs.items():
    merged_dfs[k] = (
        pd.merge(arena_dfs[k], leaderboard_df, left_index=True, right_on="key")
        .sort_values("rating", ascending=False)
        .reset_index(drop=True)
    )

# add release dates into the merged data
for k, v in merged_dfs.items():
    merged_dfs[k] = pd.merge(
        merged_dfs[k], release_date_mapping[["key", "Release Date"]], on="key"
    )

# format dataframes
merged_dfs = {k: format_data(v) for k, v in merged_dfs.items()}

# get constants
min_elo_score, max_elo_score, upper_models_per_month = get_constants(merged_dfs)
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
orgs = merged_dfs["Overall"].Organization.unique().tolist()

###################
### Build and Plot Data
###################


def get_data_split(dfs, set_name):
    df = dfs[set_name].copy(deep=True)
    return df.reset_index(drop=True)


def clean_df_for_display(df):

    df = df.loc[
        :,
        [
            "Model",
            "rating",
            "MMLU",
            "MT-bench (score)",
            "Release Date",
            "Organization",
            "License",
            "Link",
        ],
    ].rename(columns={"rating": "ELO Score", "MT-bench (score)": "MT-Bench"})

    df["Release Date"] = df["Release Date"].astype(str)
    df.sort_values("ELO Score", ascending=False, inplace=True)
    df.reset_index(drop=True, inplace=True)
    return df


def filter_df(min_score, max_models_per_month, set_selector, org_selector):
    df = get_data_split(merged_dfs, set_name=set_selector)

    # filter data
    filtered_df = df[
        (df["rating"] >= min_score) & (df["Organization"].isin(org_selector))
    ]

    filtered_df = (
        filtered_df.groupby(["Month-Year", "License"], group_keys=False)
        .apply(lambda x: x.nlargest(max_models_per_month, "rating"))
        .reset_index(drop=True)
    )

    return filtered_df


def build_plot(toggle_annotations, filtered_df):

    # construct plot
    custom_colors = {"Open": "#ff7f0e", "Proprietary": "#1f77b4"}
    fig = px.scatter(
        filtered_df,
        x="Release Date",
        y="rating",
        color="License",
        hover_name="Model",
        hover_data=["Organization", "License", "Link"],
        trendline="ols",
        title=f"Open vs Proprietary LLMs by LMSYS Arena ELO Score<br>(as of {date_updated})",
        labels={"rating": "Arena ELO", "Release Date": "Release Date"},
        height=700,
        template="plotly_dark",
        color_discrete_map=custom_colors,
    )

    fig.update_layout(
        plot_bgcolor="rgba(0,0,0,0)",  # Set background color to transparent
        paper_bgcolor="rgba(0,0,0,0)",  # Set paper (plot) background color to transparent
        title={"x": 0.5},
    )

    fig.update_traces(marker=dict(size=10, opacity=0.6))

    # calculate days until crossover
    trend1, trend2 = get_trendlines(fig)
    crossover = find_crossover_point(
        b1=trend1[0], m1=trend1[1], b2=trend2[0], m2=trend2[1]
    )
    days_til_crossover = (
        pd.to_datetime(crossover, unit="s") - pd.Timestamp.today()
    ).days

    # add annotation with number of models and days til crossover
    fig.add_annotation(
        xref="paper",
        yref="paper",  # use paper coordinates
        x=-0.05,
        y=1.13,
        text=f"Number of models: {len(filtered_df)}<br>Days til crossover: {days_til_crossover}",
        showarrow=False,
        font=dict(size=14, color="white"),
        bgcolor="rgba(0,0,0,0.5)",
    )

    if toggle_annotations:
        # get the points to annotate (only the highest rated model per month per license)
        idx_to_annotate = filtered_df.groupby(["Month-Year", "License"])[
            "rating"
        ].idxmax()
        points_to_annotate_df = filtered_df.loc[idx_to_annotate]

        for i, row in points_to_annotate_df.iterrows():
            fig.add_annotation(
                x=row["Release Date"],
                y=row["rating"],
                text=row["Model"],
                showarrow=True,
                arrowhead=0,
            )

    return fig, clean_df_for_display(filtered_df)


set_dark_mode = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""

with gr.Blocks(
    theme=gr.themes.Soft(
        primary_hue=gr.themes.colors.sky,
        secondary_hue=gr.themes.colors.green,
        # spacing_size=gr.themes.sizes.spacing_sm,
        text_size=gr.themes.sizes.text_sm,
        font=[
            gr.themes.GoogleFont("Open Sans"),
            "ui-sans-serif",
            "system-ui",
            "sans-serif",
        ],
    ),
    js=set_dark_mode,
) as demo:
    gr.Markdown(
        """
        <div style="text-align: center; max-width: 650px; margin: auto;">
            <h1 style="font-weight: 900; margin-top: 5px;">🔬 Progress Tracker: Open vs. Proprietary LLMs 🔬</h1>
            <p style="text-align: left; margin-top: 30px; margin-bottom: 30px; line-height: 20px;">
            This app visualizes the progress of proprietary and open-source LLMs over time as scored by the <a href="https://leaderboard.lmsys.org/">LMSYS Chatbot Arena</a>.
            The idea is inspired by <a href="https://www.linkedin.com/posts/maxime-labonne_arena-elo-graph-updated-with-new-models-activity-7187062633735368705-u2jB">this great work</a> 
            from <a href="https://huggingface.co/mlabonne/">Maxime Labonne</a>, and is intended to stay up-to-date as new models are released and evaluated.
            <div style="text-align: left;">
            <strong>Plot info:</strong>
            <br>
            <ul style="padding-left: 20px;">
                <li> The ELO score (y-axis) is a measure of the relative strength of a model based on its performance against other models in the arena. </li>
                <li> The Release Date (x-axis) corresponds to when the model was first publicly released or when its ELO results were first reported (for ease of automated updates). </li>
                <li> Trend lines are based on Ordinary Least Squares (OLS) regression and adjust based on the filter criteria. </li>
            <ul>
            </div>
            </p>
        </div>
        """
    )
    with gr.Group():
        with gr.Row(variant="compact"):
            set_selector = gr.Dropdown(
                choices=list(CAT_NAME_TO_EXPLANATION.keys()),
                label="Select Category",
                value="Overall",
                info="Select the category to visualize",
            )
            min_score = gr.Slider(
                minimum=min_elo_score,
                maximum=max_elo_score,
                value=(max_elo_score - min_elo_score) * 0.3 + min_elo_score,
                step=50,
                label="Minimum ELO Score",
                info="Filter out low scoring models",
            )
            max_models_per_month = gr.Slider(
                value=upper_models_per_month - 2,
                minimum=1,
                maximum=upper_models_per_month,
                step=1,
                label="Max Models per Month (per License)",
                info="Limit to N best models per month per license to reduce clutter",
            )
            toggle_annotations = gr.Radio(
                choices=[True, False],
                label="Overlay Best Model Name",
                value=True,
                info="Toggle to overlay the name of the best model per month per license",
            )
        with gr.Row(variant="compact"):
            with gr.Accordion("More options", open=False):
                org_selector = gr.Dropdown(
                    choices=sorted(orgs),
                    label="Filter by Organization",
                    value=sorted(orgs),
                    multiselect=True,
                    info="Limit organizations included in plot",
                )

    # Show plot
    filtered_df = gr.State()
    with gr.Group():
        with gr.Tab("Plot"):
            plot = gr.Plot(show_label=False)
        with gr.Tab("Raw Data"):

            display_df = gr.DataFrame()

    demo.load(
        fn=filter_df,
        inputs=[min_score, max_models_per_month, set_selector, org_selector],
        outputs=filtered_df,
    ).then(
        fn=build_plot,
        inputs=[toggle_annotations, filtered_df],
        outputs=[plot, display_df],
    )

    min_score.change(
        fn=filter_df,
        inputs=[min_score, max_models_per_month, set_selector, org_selector],
        outputs=filtered_df,
    ).then(
        fn=build_plot,
        inputs=[toggle_annotations, filtered_df],
        outputs=[plot, display_df],
    )

    max_models_per_month.change(
        fn=filter_df,
        inputs=[min_score, max_models_per_month, set_selector, org_selector],
        outputs=filtered_df,
    ).then(
        fn=build_plot,
        inputs=[toggle_annotations, filtered_df],
        outputs=[plot, display_df],
    )

    toggle_annotations.change(
        fn=filter_df,
        inputs=[min_score, max_models_per_month, set_selector, org_selector],
        outputs=filtered_df,
    ).then(
        fn=build_plot,
        inputs=[toggle_annotations, filtered_df],
        outputs=[plot, display_df],
    )

    set_selector.change(
        fn=filter_df,
        inputs=[min_score, max_models_per_month, set_selector, org_selector],
        outputs=filtered_df,
    ).then(
        fn=build_plot,
        inputs=[toggle_annotations, filtered_df],
        outputs=[plot, display_df],
    )

    org_selector.change(
        fn=filter_df,
        inputs=[min_score, max_models_per_month, set_selector, org_selector],
        outputs=filtered_df,
    ).then(
        fn=build_plot,
        inputs=[toggle_annotations, filtered_df],
        outputs=[plot, display_df],
    )

    gr.Markdown(
        """
                <div style="text-align: center; max-width: 650px; margin: auto;">
                <p style="margin-top: 40px;"> If you have any questions, feel free to open a discussion or <a href="https://twitter.com/andrewrreed">reach out to me on social</a>. </p>
                </p>
                </div>
                """
    )

demo.launch()