andrewrreed HF staff commited on
Commit
4ae93a7
·
1 Parent(s): 2f78375

cleanup + refactor

Browse files
Files changed (2) hide show
  1. app.py +8 -30
  2. utils.py +37 -0
app.py CHANGED
@@ -9,9 +9,9 @@ from utils import (
9
  PROPRIETARY_LICENSES,
10
  CAT_NAME_TO_EXPLANATION,
11
  download_latest_data_from_space,
 
12
  )
13
 
14
- # with gr.NO_RELOAD:
15
  ###################
16
  ### Load Data
17
  ###################
@@ -72,43 +72,21 @@ merged_dfs = {k: format_data(v) for k, v in merged_dfs.items()}
72
 
73
 
74
  # get constants
75
- filter_ranges = {}
76
- for k, df in merged_dfs.items():
77
- filter_ranges[k] = {
78
- "min_elo_score": df["rating"].min().round(),
79
- "max_elo_score": df["rating"].max().round(),
80
- "upper_models_per_month": int(
81
- df.groupby(["Month-Year", "License"])["rating"]
82
- .apply(lambda x: x.count())
83
- .max()
84
- ),
85
- }
86
-
87
- min_elo_score = float("inf")
88
- max_elo_score = float("-inf")
89
- upper_models_per_month = 0
90
-
91
- for key, value in filter_ranges.items():
92
- min_elo_score = min(min_elo_score, value["min_elo_score"])
93
- max_elo_score = max(max_elo_score, value["max_elo_score"])
94
- upper_models_per_month = max(
95
- upper_models_per_month, value["upper_models_per_month"]
96
- )
97
-
98
 
99
  date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
100
 
101
 
102
- def get_data_split(dfs, set_name):
103
- df = dfs[set_name].copy(deep=True)
104
- return df.reset_index(drop=True)
105
-
106
-
107
  ###################
108
  ### Plot Data
109
  ###################
110
 
111
 
 
 
 
 
 
112
  def build_plot(min_score, max_models_per_month, toggle_annotations, set_selector):
113
 
114
  df = get_data_split(merged_dfs, set_name=set_selector)
@@ -172,7 +150,7 @@ with gr.Blocks(
172
  gr.Markdown(
173
  """
174
  <div style="text-align: center; max-width: 650px; margin: auto;">
175
- <h1 style="font-weight: 900; margin-top: 5px;">🔬 Progress Tracker: Proprietary vs Open LLMs
176
  </h1>
177
  <p style="text-align: left; margin-top: 10px; margin-bottom: 10px; line-height: 20px;">
178
  This app visualizes the progress of proprietary and open-source LLMs in the LMSYS Arena ELO leaderboard. The idea is inspired by <a href="https://www.linkedin.com/posts/maxime-labonne_arena-elo-graph-updated-with-new-models-activity-7187062633735368705-u2jB?utm_source=share&utm_medium=member_desktop">this great work</a> from <a href="https://huggingface.co/mlabonne/">Maxime Labonne</a>.
 
9
  PROPRIETARY_LICENSES,
10
  CAT_NAME_TO_EXPLANATION,
11
  download_latest_data_from_space,
12
+ get_constants,
13
  )
14
 
 
15
  ###################
16
  ### Load Data
17
  ###################
 
72
 
73
 
74
  # get constants
75
+ min_elo_score, max_elo_score, upper_models_per_month = get_constants(merged_dfs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
  date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
78
 
79
 
 
 
 
 
 
80
  ###################
81
  ### Plot Data
82
  ###################
83
 
84
 
85
+ def get_data_split(dfs, set_name):
86
+ df = dfs[set_name].copy(deep=True)
87
+ return df.reset_index(drop=True)
88
+
89
+
90
  def build_plot(min_score, max_models_per_month, toggle_annotations, set_selector):
91
 
92
  df = get_data_split(merged_dfs, set_name=set_selector)
 
150
  gr.Markdown(
151
  """
152
  <div style="text-align: center; max-width: 650px; margin: auto;">
153
+ <h1 style="font-weight: 900; margin-top: 5px;">🔬 Progress Tracker: Open vs. Proprietary LLMs
154
  </h1>
155
  <p style="text-align: left; margin-top: 10px; margin-bottom: 10px; line-height: 20px;">
156
  This app visualizes the progress of proprietary and open-source LLMs in the LMSYS Arena ELO leaderboard. The idea is inspired by <a href="https://www.linkedin.com/posts/maxime-labonne_arena-elo-graph-updated-with-new-models-activity-7187062633735368705-u2jB?utm_source=share&utm_medium=member_desktop">this great work</a> from <a href="https://huggingface.co/mlabonne/">Maxime Labonne</a>.
utils.py CHANGED
@@ -58,3 +58,40 @@ def download_latest_data_from_space(
58
  repo_type="space",
59
  )
60
  return latest_filepath_local
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  repo_type="space",
59
  )
60
  return latest_filepath_local
61
+
62
+
63
+ def get_constants(dfs):
64
+ """
65
+ Calculate and return the minimum and maximum Elo scores, as well as the maximum number of models per month.
66
+
67
+ Parameters:
68
+ - dfs (dict): A dictionary containing DataFrames for different categories.
69
+
70
+ Returns:
71
+ - min_elo_score (float): The minimum Elo score across all DataFrames.
72
+ - max_elo_score (float): The maximum Elo score across all DataFrames.
73
+ - upper_models_per_month (int): The maximum number of models per month per license across all DataFrames.
74
+ """
75
+ filter_ranges = {}
76
+ for k, df in dfs.items():
77
+ filter_ranges[k] = {
78
+ "min_elo_score": df["rating"].min().round(),
79
+ "max_elo_score": df["rating"].max().round(),
80
+ "upper_models_per_month": int(
81
+ df.groupby(["Month-Year", "License"])["rating"]
82
+ .apply(lambda x: x.count())
83
+ .max()
84
+ ),
85
+ }
86
+
87
+ min_elo_score = float("inf")
88
+ max_elo_score = float("-inf")
89
+ upper_models_per_month = 0
90
+
91
+ for _, value in filter_ranges.items():
92
+ min_elo_score = min(min_elo_score, value["min_elo_score"])
93
+ max_elo_score = max(max_elo_score, value["max_elo_score"])
94
+ upper_models_per_month = max(
95
+ upper_models_per_month, value["upper_models_per_month"]
96
+ )
97
+ return min_elo_score, max_elo_score, upper_models_per_month