Spaces:
Runtime error
Runtime error
root
commited on
Commit
·
c5ab12e
1
Parent(s):
c839b4c
deepnote update
Browse files
app.py
CHANGED
@@ -14,10 +14,16 @@ from langchain.vectorstores import Chroma
|
|
14 |
from langchain.vectorstores.base import VectorStoreRetriever
|
15 |
|
16 |
|
17 |
-
current_agent =
|
18 |
vectordb = None
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def load_dialogues():
|
22 |
df = pd.read_excel(os.environ["DIALOGUE_SHEET"], header=0, keep_default_na=False)
|
23 |
df = df[df["Agent"] == current_agent]
|
@@ -27,13 +33,13 @@ def load_dialogues():
|
|
27 |
def load_persona():
|
28 |
df = pd.read_excel(os.environ["PERSONA_SHEET"], header=0, keep_default_na=False)
|
29 |
df = df[df["Agent"] == current_agent]
|
30 |
-
return df
|
31 |
|
32 |
|
33 |
def load_prompts():
|
34 |
df = pd.read_excel(os.environ["PROMPT_SHEET"], header=0, keep_default_na=False)
|
35 |
df = df[df["Agent"] == current_agent]
|
36 |
-
return df
|
37 |
|
38 |
|
39 |
def load_documents(df, page_content_column: str):
|
@@ -87,51 +93,48 @@ def get_retriever(context_state: str, vectordb):
|
|
87 |
|
88 |
@cl.langchain_factory(use_async=True)
|
89 |
def factory():
|
|
|
90 |
load_vectordb()
|
91 |
-
df_prompts = load_prompts()
|
92 |
user_session.set("context_state", "")
|
|
|
|
|
93 |
|
94 |
llm_settings = LLMSettings(
|
95 |
model_name="text-davinci-003",
|
96 |
-
temperature=
|
97 |
)
|
98 |
user_session.set("llm_settings", llm_settings)
|
99 |
|
100 |
-
llm = AzureOpenAI(
|
101 |
-
deployment_name="davinci003",
|
102 |
-
model_name=llm_settings.model_name,
|
103 |
-
temperature=llm_settings.temperature,
|
104 |
-
streaming=True,
|
105 |
-
)
|
106 |
-
|
107 |
-
utterance_prompt = PromptTemplate.from_template(df_prompts["Template"].values[0])
|
108 |
-
|
109 |
chat_memory = ConversationBufferWindowMemory(
|
110 |
memory_key="History",
|
111 |
input_key="Utterance",
|
112 |
-
k=
|
113 |
)
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
llm=llm,
|
127 |
-
verbose=
|
128 |
memory=chat_memory,
|
129 |
)
|
130 |
|
131 |
-
user_session.set("continuation_chain", continuation_chain)
|
132 |
-
|
133 |
-
return utterance_chain
|
134 |
-
|
135 |
|
136 |
@cl.langchain_run
|
137 |
async def run(agent, input_str):
|
@@ -140,48 +143,81 @@ async def run(agent, input_str):
|
|
140 |
vectordb = load_vectordb(True)
|
141 |
return await cl.Message(content="Data loaded").send()
|
142 |
|
143 |
-
|
|
|
|
|
144 |
|
145 |
retriever = get_retriever(user_session.get("context_state"), vectordb)
|
146 |
-
|
147 |
document = retriever.get_relevant_documents(query=input_str)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
].
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
llm_settings
|
163 |
-
).send()
|
164 |
-
user_session.set("context_state", document[0].metadata["Contextualisation"])
|
165 |
-
continuation = document[0].metadata["Continuation"]
|
166 |
|
167 |
-
|
168 |
-
document_continuation = vectordb.get(where={"Intent": continuation})
|
169 |
-
continuation_chain = user_session.get("continuation_chain")
|
170 |
-
response = await continuation_chain.acall(
|
171 |
{
|
172 |
"Persona": df_persona.loc[
|
173 |
-
df_persona["
|
174 |
]["Persona"].values[0],
|
175 |
-
"Utterance":
|
176 |
-
"Response":
|
177 |
},
|
178 |
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
179 |
)
|
180 |
await cl.Message(
|
181 |
content=response["text"],
|
182 |
-
author=
|
183 |
-
llm_settings=
|
184 |
).send()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
user_session.set(
|
186 |
"context_state",
|
187 |
document_continuation["metadatas"][0]["Contextualisation"],
|
|
|
14 |
from langchain.vectorstores.base import VectorStoreRetriever
|
15 |
|
16 |
|
17 |
+
current_agent = "Demo"
|
18 |
vectordb = None
|
19 |
|
20 |
|
21 |
+
def load_agent():
|
22 |
+
df = pd.read_excel(os.environ["AGENT_SHEET"], header=0, keep_default_na=False)
|
23 |
+
df = df[df["Agent"] == current_agent]
|
24 |
+
return df
|
25 |
+
|
26 |
+
|
27 |
def load_dialogues():
|
28 |
df = pd.read_excel(os.environ["DIALOGUE_SHEET"], header=0, keep_default_na=False)
|
29 |
df = df[df["Agent"] == current_agent]
|
|
|
33 |
def load_persona():
|
34 |
df = pd.read_excel(os.environ["PERSONA_SHEET"], header=0, keep_default_na=False)
|
35 |
df = df[df["Agent"] == current_agent]
|
36 |
+
return df
|
37 |
|
38 |
|
39 |
def load_prompts():
|
40 |
df = pd.read_excel(os.environ["PROMPT_SHEET"], header=0, keep_default_na=False)
|
41 |
df = df[df["Agent"] == current_agent]
|
42 |
+
return df
|
43 |
|
44 |
|
45 |
def load_documents(df, page_content_column: str):
|
|
|
93 |
|
94 |
@cl.langchain_factory(use_async=True)
|
95 |
def factory():
|
96 |
+
df_agent = load_agent()
|
97 |
load_vectordb()
|
|
|
98 |
user_session.set("context_state", "")
|
99 |
+
user_session.set("df_prompts", load_prompts())
|
100 |
+
user_session.set("df_persona", load_persona())
|
101 |
|
102 |
llm_settings = LLMSettings(
|
103 |
model_name="text-davinci-003",
|
104 |
+
temperature=0.7,
|
105 |
)
|
106 |
user_session.set("llm_settings", llm_settings)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
chat_memory = ConversationBufferWindowMemory(
|
109 |
memory_key="History",
|
110 |
input_key="Utterance",
|
111 |
+
k=df_agent["History"].values[0],
|
112 |
)
|
113 |
+
user_session.set("chat_memory", chat_memory)
|
114 |
|
115 |
+
llm = AzureOpenAI(
|
116 |
+
deployment_name="davinci003",
|
117 |
+
model_name=llm_settings.model_name,
|
118 |
+
temperature=llm_settings.temperature,
|
119 |
+
streaming=True,
|
120 |
)
|
121 |
|
122 |
+
default_prompt = """{History}
|
123 |
+
##
|
124 |
+
System: {Persona}
|
125 |
+
##
|
126 |
+
Human: {Utterance}
|
127 |
+
Response: {Response}
|
128 |
+
##
|
129 |
+
AI:"""
|
130 |
+
|
131 |
+
return LLMChain(
|
132 |
+
prompt=PromptTemplate.from_template(default_prompt),
|
133 |
llm=llm,
|
134 |
+
verbose=True,
|
135 |
memory=chat_memory,
|
136 |
)
|
137 |
|
|
|
|
|
|
|
|
|
138 |
|
139 |
@cl.langchain_run
|
140 |
async def run(agent, input_str):
|
|
|
143 |
vectordb = load_vectordb(True)
|
144 |
return await cl.Message(content="Data loaded").send()
|
145 |
|
146 |
+
df_prompts = user_session.get("df_prompts")
|
147 |
+
df_persona = user_session.get("df_persona")
|
148 |
+
llm_settings = user_session.get("llm_settings")
|
149 |
|
150 |
retriever = get_retriever(user_session.get("context_state"), vectordb)
|
|
|
151 |
document = retriever.get_relevant_documents(query=input_str)
|
152 |
|
153 |
+
prompt = document[0].metadata["Prompt"]
|
154 |
+
if not prompt:
|
155 |
+
await cl.Message(
|
156 |
+
content=document[0].metadata["Response"],
|
157 |
+
author=document[0].metadata["Role"],
|
158 |
+
).send()
|
159 |
+
else:
|
160 |
+
agent.prompt = PromptTemplate.from_template(
|
161 |
+
df_prompts.loc[df_prompts["Prompt"] == prompt]["Template"].values[0]
|
162 |
+
)
|
163 |
+
llm_settings.temperature = df_prompts.loc[df_prompts["Prompt"] == prompt][
|
164 |
+
"Temperature"
|
165 |
+
].values[0]
|
166 |
+
agent.llm.temperature = llm_settings.temperature
|
|
|
|
|
|
|
167 |
|
168 |
+
response = await agent.acall(
|
|
|
|
|
|
|
169 |
{
|
170 |
"Persona": df_persona.loc[
|
171 |
+
df_persona["Role"] == document[0].metadata["Role"]
|
172 |
]["Persona"].values[0],
|
173 |
+
"Utterance": input_str,
|
174 |
+
"Response": document[0].metadata["Response"],
|
175 |
},
|
176 |
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
177 |
)
|
178 |
await cl.Message(
|
179 |
content=response["text"],
|
180 |
+
author=document[0].metadata["Role"],
|
181 |
+
llm_settings=llm_settings,
|
182 |
).send()
|
183 |
+
|
184 |
+
user_session.set("context_state", document[0].metadata["Contextualisation"])
|
185 |
+
continuation = document[0].metadata["Continuation"]
|
186 |
+
|
187 |
+
while continuation != "":
|
188 |
+
document_continuation = vectordb.get(where={"Intent": continuation})
|
189 |
+
|
190 |
+
prompt = document_continuation["metadatas"][0]["Prompt"]
|
191 |
+
if not prompt:
|
192 |
+
await cl.Message(
|
193 |
+
content=document_continuation["metadatas"][0]["Response"],
|
194 |
+
author=document_continuation["metadatas"][0]["Role"],
|
195 |
+
).send()
|
196 |
+
else:
|
197 |
+
agent.prompt = PromptTemplate.from_template(
|
198 |
+
df_prompts.loc[df_prompts["Prompt"] == prompt]["Template"].values[0]
|
199 |
+
)
|
200 |
+
llm_settings.temperature = df_prompts.loc[df_prompts["Prompt"] == prompt][
|
201 |
+
"Temperature"
|
202 |
+
].values[0]
|
203 |
+
agent.llm.temperature = llm_settings.temperature
|
204 |
+
|
205 |
+
response = await agent.acall(
|
206 |
+
{
|
207 |
+
"Persona": df_persona.loc[
|
208 |
+
df_persona["Role"]
|
209 |
+
== document_continuation["metadatas"][0]["Role"]
|
210 |
+
]["Persona"].values[0],
|
211 |
+
"Utterance": "",
|
212 |
+
"Response": document_continuation["metadatas"][0]["Response"],
|
213 |
+
},
|
214 |
+
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
215 |
+
)
|
216 |
+
await cl.Message(
|
217 |
+
content=response["text"],
|
218 |
+
author=document_continuation["metadatas"][0]["Role"],
|
219 |
+
llm_settings=llm_settings,
|
220 |
+
).send()
|
221 |
user_session.set(
|
222 |
"context_state",
|
223 |
document_continuation["metadatas"][0]["Contextualisation"],
|