Spaces:
Runtime error
Runtime error
root
commited on
Commit
·
c839b4c
1
Parent(s):
4fd61d3
deepnote update
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import pandas as pd
|
|
3 |
import chainlit as cl
|
4 |
from chainlit import user_session
|
5 |
from chainlit.types import LLMSettings
|
|
|
6 |
from langchain import LLMChain
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
from langchain.llms import AzureOpenAI
|
@@ -13,7 +14,8 @@ from langchain.vectorstores import Chroma
|
|
13 |
from langchain.vectorstores.base import VectorStoreRetriever
|
14 |
|
15 |
|
16 |
-
current_agent = os.environ["
|
|
|
17 |
|
18 |
|
19 |
def load_dialogues():
|
@@ -28,10 +30,8 @@ def load_persona():
|
|
28 |
return df.astype(str)
|
29 |
|
30 |
|
31 |
-
def
|
32 |
-
df = pd.read_excel(
|
33 |
-
os.environ["PROMPT_ENGINEERING_SHEET"], header=0, keep_default_na=False
|
34 |
-
)
|
35 |
df = df[df["Agent"] == current_agent]
|
36 |
return df.astype(str)
|
37 |
|
@@ -50,20 +50,25 @@ def init_embedding_function():
|
|
50 |
|
51 |
|
52 |
def load_vectordb(init: bool = False):
|
53 |
-
vectordb
|
54 |
VECTORDB_FOLDER = ".vectordb"
|
55 |
-
if not init:
|
56 |
vectordb = Chroma(
|
57 |
embedding_function=init_embedding_function(),
|
58 |
persist_directory=VECTORDB_FOLDER,
|
59 |
)
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
vectordb = Chroma.from_documents(
|
62 |
documents=load_documents(load_dialogues(), page_content_column="Utterance"),
|
63 |
embedding=init_embedding_function(),
|
64 |
persist_directory=VECTORDB_FOLDER,
|
65 |
)
|
66 |
vectordb.persist()
|
|
|
67 |
return vectordb
|
68 |
|
69 |
|
@@ -80,17 +85,15 @@ def get_retriever(context_state: str, vectordb):
|
|
80 |
)
|
81 |
|
82 |
|
83 |
-
vectordb = load_vectordb()
|
84 |
-
|
85 |
-
|
86 |
@cl.langchain_factory(use_async=True)
|
87 |
def factory():
|
88 |
-
|
|
|
89 |
user_session.set("context_state", "")
|
90 |
|
91 |
llm_settings = LLMSettings(
|
92 |
model_name="text-davinci-003",
|
93 |
-
temperature=
|
94 |
)
|
95 |
user_session.set("llm_settings", llm_settings)
|
96 |
|
@@ -101,14 +104,12 @@ def factory():
|
|
101 |
streaming=True,
|
102 |
)
|
103 |
|
104 |
-
utterance_prompt = PromptTemplate.from_template(
|
105 |
-
df_prompt_engineering["Utterance-Prompt"].values[0]
|
106 |
-
)
|
107 |
|
108 |
chat_memory = ConversationBufferWindowMemory(
|
109 |
memory_key="History",
|
110 |
input_key="Utterance",
|
111 |
-
k=
|
112 |
)
|
113 |
|
114 |
utterance_chain = LLMChain(
|
@@ -118,9 +119,7 @@ def factory():
|
|
118 |
memory=chat_memory,
|
119 |
)
|
120 |
|
121 |
-
continuation_prompt = PromptTemplate.from_template(
|
122 |
-
df_prompt_engineering["Continuation-Prompt"].values[0]
|
123 |
-
)
|
124 |
|
125 |
continuation_chain = LLMChain(
|
126 |
prompt=continuation_prompt,
|
@@ -139,52 +138,52 @@ async def run(agent, input_str):
|
|
139 |
global vectordb
|
140 |
if input_str == "/reload":
|
141 |
vectordb = load_vectordb(True)
|
142 |
-
await cl.Message(content="Data loaded").send()
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
147 |
|
148 |
-
|
149 |
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
{
|
152 |
"Persona": df_persona.loc[
|
153 |
-
df_persona["AI"] ==
|
154 |
]["Persona"].values[0],
|
155 |
-
"Utterance":
|
156 |
-
"Response":
|
157 |
},
|
158 |
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
159 |
)
|
160 |
await cl.Message(
|
161 |
content=response["text"],
|
162 |
-
author=
|
163 |
llm_settings=user_session.get("llm_settings"),
|
164 |
).send()
|
165 |
-
user_session.set(
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
continuation_chain = user_session.get("continuation_chain")
|
171 |
-
response = await continuation_chain.acall(
|
172 |
-
{
|
173 |
-
"Persona": df_persona.loc[
|
174 |
-
df_persona["AI"] == document_continuation["metadatas"][0]["AI"]
|
175 |
-
]["Persona"].values[0],
|
176 |
-
"Utterance": "",
|
177 |
-
"Response": document_continuation["metadatas"][0]["Response"],
|
178 |
-
},
|
179 |
-
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
180 |
-
)
|
181 |
-
await cl.Message(
|
182 |
-
content=response["text"],
|
183 |
-
author=document_continuation["metadatas"][0]["AI"],
|
184 |
-
llm_settings=user_session.get("llm_settings"),
|
185 |
-
).send()
|
186 |
-
user_session.set(
|
187 |
-
"context_state",
|
188 |
-
document_continuation["metadatas"][0]["Contextualisation"],
|
189 |
-
)
|
190 |
-
continuation = document_continuation["metadatas"][0]["Continuation"]
|
|
|
3 |
import chainlit as cl
|
4 |
from chainlit import user_session
|
5 |
from chainlit.types import LLMSettings
|
6 |
+
from chainlit.logger import logger
|
7 |
from langchain import LLMChain
|
8 |
from langchain.prompts import PromptTemplate
|
9 |
from langchain.llms import AzureOpenAI
|
|
|
14 |
from langchain.vectorstores.base import VectorStoreRetriever
|
15 |
|
16 |
|
17 |
+
current_agent = os.environ["AGENT_SHEET"]
|
18 |
+
vectordb = None
|
19 |
|
20 |
|
21 |
def load_dialogues():
|
|
|
30 |
return df.astype(str)
|
31 |
|
32 |
|
33 |
+
def load_prompts():
|
34 |
+
df = pd.read_excel(os.environ["PROMPT_SHEET"], header=0, keep_default_na=False)
|
|
|
|
|
35 |
df = df[df["Agent"] == current_agent]
|
36 |
return df.astype(str)
|
37 |
|
|
|
50 |
|
51 |
|
52 |
def load_vectordb(init: bool = False):
|
53 |
+
global vectordb
|
54 |
VECTORDB_FOLDER = ".vectordb"
|
55 |
+
if not init and vectordb is None:
|
56 |
vectordb = Chroma(
|
57 |
embedding_function=init_embedding_function(),
|
58 |
persist_directory=VECTORDB_FOLDER,
|
59 |
)
|
60 |
+
if not vectordb.get()["ids"]:
|
61 |
+
init = True
|
62 |
+
else:
|
63 |
+
logger.info(f"Vector DB loaded")
|
64 |
+
if init:
|
65 |
vectordb = Chroma.from_documents(
|
66 |
documents=load_documents(load_dialogues(), page_content_column="Utterance"),
|
67 |
embedding=init_embedding_function(),
|
68 |
persist_directory=VECTORDB_FOLDER,
|
69 |
)
|
70 |
vectordb.persist()
|
71 |
+
logger.info(f"Vector DB initialised")
|
72 |
return vectordb
|
73 |
|
74 |
|
|
|
85 |
)
|
86 |
|
87 |
|
|
|
|
|
|
|
88 |
@cl.langchain_factory(use_async=True)
|
89 |
def factory():
|
90 |
+
load_vectordb()
|
91 |
+
df_prompts = load_prompts()
|
92 |
user_session.set("context_state", "")
|
93 |
|
94 |
llm_settings = LLMSettings(
|
95 |
model_name="text-davinci-003",
|
96 |
+
temperature=df_prompts["Temperature"].values[0],
|
97 |
)
|
98 |
user_session.set("llm_settings", llm_settings)
|
99 |
|
|
|
104 |
streaming=True,
|
105 |
)
|
106 |
|
107 |
+
utterance_prompt = PromptTemplate.from_template(df_prompts["Template"].values[0])
|
|
|
|
|
108 |
|
109 |
chat_memory = ConversationBufferWindowMemory(
|
110 |
memory_key="History",
|
111 |
input_key="Utterance",
|
112 |
+
k=df_prompts["History"].values[0],
|
113 |
)
|
114 |
|
115 |
utterance_chain = LLMChain(
|
|
|
119 |
memory=chat_memory,
|
120 |
)
|
121 |
|
122 |
+
continuation_prompt = PromptTemplate.from_template(df_prompts["Template"].values[1])
|
|
|
|
|
123 |
|
124 |
continuation_chain = LLMChain(
|
125 |
prompt=continuation_prompt,
|
|
|
138 |
global vectordb
|
139 |
if input_str == "/reload":
|
140 |
vectordb = load_vectordb(True)
|
141 |
+
return await cl.Message(content="Data loaded").send()
|
142 |
+
|
143 |
+
df_persona = load_persona()
|
144 |
|
145 |
+
retriever = get_retriever(user_session.get("context_state"), vectordb)
|
146 |
|
147 |
+
document = retriever.get_relevant_documents(query=input_str)
|
148 |
|
149 |
+
response = await agent.acall(
|
150 |
+
{
|
151 |
+
"Persona": df_persona.loc[df_persona["AI"] == document[0].metadata["AI"]][
|
152 |
+
"Persona"
|
153 |
+
].values[0],
|
154 |
+
"Utterance": input_str,
|
155 |
+
"Response": document[0].metadata["Response"],
|
156 |
+
},
|
157 |
+
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
158 |
+
)
|
159 |
+
await cl.Message(
|
160 |
+
content=response["text"],
|
161 |
+
author=document[0].metadata["AI"],
|
162 |
+
llm_settings=user_session.get("llm_settings"),
|
163 |
+
).send()
|
164 |
+
user_session.set("context_state", document[0].metadata["Contextualisation"])
|
165 |
+
continuation = document[0].metadata["Continuation"]
|
166 |
+
|
167 |
+
while continuation != "":
|
168 |
+
document_continuation = vectordb.get(where={"Intent": continuation})
|
169 |
+
continuation_chain = user_session.get("continuation_chain")
|
170 |
+
response = await continuation_chain.acall(
|
171 |
{
|
172 |
"Persona": df_persona.loc[
|
173 |
+
df_persona["AI"] == document_continuation["metadatas"][0]["AI"]
|
174 |
]["Persona"].values[0],
|
175 |
+
"Utterance": "",
|
176 |
+
"Response": document_continuation["metadatas"][0]["Response"],
|
177 |
},
|
178 |
callbacks=[cl.AsyncLangchainCallbackHandler()],
|
179 |
)
|
180 |
await cl.Message(
|
181 |
content=response["text"],
|
182 |
+
author=document_continuation["metadatas"][0]["AI"],
|
183 |
llm_settings=user_session.get("llm_settings"),
|
184 |
).send()
|
185 |
+
user_session.set(
|
186 |
+
"context_state",
|
187 |
+
document_continuation["metadatas"][0]["Contextualisation"],
|
188 |
+
)
|
189 |
+
continuation = document_continuation["metadatas"][0]["Continuation"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|